Unknown

Dataset Information

0

Resting-state network complexity and magnitude changes in neonates with severe hypoxic ischemic encephalopathy.


ABSTRACT: Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 term-born infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital (approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR1800016409) and the protocol version is 1.0.

SUBMITTER: Li HX 

PROVIDER: S-EPMC6352595 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Resting-state network complexity and magnitude changes in neonates with severe hypoxic ischemic encephalopathy.

Li Hong-Xin HX   Yu Min M   Zheng Ai-Bin AB   Zhang Qin-Fen QF   Hua Guo-Wei GW   Tu Wen-Juan WJ   Zhang Li-Chi LC  

Neural regeneration research 20190401 4


Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 term-born infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data s  ...[more]

Similar Datasets

| S-EPMC4677980 | biostudies-literature
| S-EPMC7060842 | biostudies-literature
| S-EPMC5240044 | biostudies-literature
| S-EPMC6824259 | biostudies-literature
| S-EPMC5476365 | biostudies-literature
| S-EPMC10601291 | biostudies-literature
| S-EPMC10652158 | biostudies-literature
| S-EPMC6069156 | biostudies-literature
| S-EPMC6639904 | biostudies-other
| S-EPMC2897079 | biostudies-other