Project description:Alpha-1 antitrypsin (AAT) deficiency (AATD) is an under-recognized hereditary disorder and a significant cause of chronic obstructive pulmonary disease (COPD), a disease that contributes to global mortality. AAT is encoded by the SERPINA1 gene, and severe mutation variants of this gene increase the risk of developing COPD. AATD is more frequently screened for in non-Hispanic White populations. However, AATD is also observed in other ethnic groups and very few studies have documented the mutation frequency in these other ethnic populations. Here, we review the current literature on AATD and allele frequency primarily in Black populations and discuss the possible clinical outcomes of low screening rates in a population that experiences poor health outcomes and whether the low frequency of AATD is related to a lack of screening in this population or a truly low frequency of mutations causing AATD. This review also outlines the harmful SERPINA1 variants, the current epidemiology knowledge of AATD, health inequity in Black populations, AATD prevalence in Black populations, the clinical implications of low screening of AATD in this population, and the possible dangers of not diagnosing or treating AATD.
Project description:Alpha 1 antitrypsin deficiency is a hereditary condition characterized by low alpha 1 proteinase inhibitor (also known as alpha 1 antitrypsin [AAT]) serum levels. Reduced levels of AAT allow abnormal degradation of lung tissue, which may ultimately lead to the development of early-onset emphysema. Intravenous infusion of AAT is the only therapeutic option that can be used to maintain levels above the protective threshold. Based on its biochemical efficacy, AAT replacement therapy was approved by the US Food and Drug administration in 1987. However, there remained considerable interest in selecting appropriate outcome measures that could confirm clinical efficacy in a randomized controlled trial setting. Using computed tomography as the primary measure of decline in lung density, the capacity for intravenously administered AAT replacement therapy to slow and modify the course of disease progression was demonstrated for the first time in the Randomized, Placebo-controlled Trial of Augmentation Therapy in Alpha-1 Proteinase Inhibitor Deficiency (RAPID) trial. Following these results, an expert review forum was held at the European Respiratory Society to discuss the findings of the RAPID trial program and how they may change the landscape of alpha 1 antitrypsin emphysema treatment. This review summarizes the results of the RAPID program and the implications for clinical considerations with respect to diagnosis, treatment and management of emphysema due to alpha 1 antitrypsin deficiency.
Project description:Alpha-1 antitrypsin (AAT) deficiency (AATD) is an autosomal co-dominant condition that predisposes to the development of lung disease, primarily emphysema. Emphysema results from the breakdown of lung matrix elastin by proteases, including neutrophil elastase, a protease normally inhibited by AAT. AATD also predisposes to liver (cirrhosis) and skin (panniculitis) disease, and to vasculitis. The prevalence of AATD is estimated to be approximately 1 in 3,500 individuals in the United States. However, lack of awareness of AATD among some physicians, misperceptions regarding the absence of effective therapy, and the close overlap in symptoms with asthma and non-AATD chronic obstructive pulmonary disease are thought to contribute to under-recognition of the disease. In patients with AATD, treatment with intravenous AAT augmentation therapy is the only currently available treatment known to slow the progression of emphysema. Moreover, smoking cessation and other lifestyle interventions also help improve outcomes. Early diagnosis and intervention are of key importance due to the irreversible nature of the resultant emphysema. Liver disease is the second leading cause of death among patients with AATD and a minority of patients present with panniculitis or antineutrophil cytoplasmic antibody-associated vasculitis, thought to be directly related to AATD. Though no randomized trial has assessed the effectiveness of augmentation therapy for AATD-associated panniculitis, clinical experience and case series suggest there is a benefit. Other diseases putatively linked to AATD include aneurysmal disease and multiple neurological conditions, although these associations remain speculative in nature.
Project description:BACKGROUND:Alpha-1-antitrypsin (AAT) deficiency (AATD) of Z, Mmalton, Siiyama type is associated with liver storage of the mutant proteins and liver disease. The Z variant can be diagnosed on isoelectric focusing (IEF) while Mmalton and Siiyama may be missed or misdiagnosed with this technique. Therefore, molecular analysis is mandatory for their characterization. In particular, that holds true for the Mmalton variant as on IEF profile it resembles the wild M2 subtype. METHODS:This is a retrospective analysis involving review of medical records and of liver biopsy specimens from a series of Mmalton, Z and Siiyama Alpha-1-antitrypsin deficiency patients. The review has been implemented by additional histological stains, electron microscopic observations and 3-D modeling studies of the sites of the mutations. RESULTS:Z, Mmalton and Siiyama liver specimen contained characteristic intrahepatocytic PAS-D globules. The globules differed in the three variants as only Mmalton cases showed dark basophilic precipitates within the AAT inclusions. The precipitates were visualized in haematoxylin-eosin (H.E.) stained preparations and corresponded to calcium precipitates as demonstrated by von Kossa staining. On immunohistochemistry, ZAAT inclusions were stained by polyclonal as well as monoclonal noncommercial anti-AAT antibody (AZT11), whilst Mmalton and Siiyama inclusion bodies remained negative with the monoclonal anti-Z antibody. 3-D protein analysis allowed to predict more severe misfolding of the Mmalton molecule as compared to Z and Siiyama that could trigger anomalous interaction with endoplasmic reticulum chaperon proteins, namely calcium binding proteins. CONCLUSIONS:Mmalton AAT inclusion bodies contain calcium precipitates inside them that allow the differential diagnosis with Siiyama and ZAAT inclusions in routine histological sections. The study has confirmed the specificity of the monoclonal AZT11 for the Z mutant. Thus, the combination of these two features is crucial for the distinction between the three variants and for predicting the genotype, whose confirmation would definitely require molecular analysis. Our study provides new data on the pathomorphogenesis of Mmalton inclusion bodies whose mineralization could play a central role in disease pathogenesis of Mmalton that is distinct from the Z and Siiyama variants. Calcium is known to be a major effector of cell death either via the increased intracellular concentration or the alteration of homeostasis.
Project description:BackgroundGenetic variation may underlie phenotypic variation in chronic obstructive pulmonary disease (COPD) in subjects with and without alpha 1 antitrypsin deficiency (AATD). Genotype specific sub-phenotypes are likely and may underlie the poor replication of previous genetic studies. This study investigated subjects with AATD to determine the relationship between specific phenotypes and TNFalpha polymorphisms.Methods424 unrelated subjects of the PiZZ genotype were assessed for history of chronic bronchitis, impairment of lung function and radiological presence of emphysema and bronchiectasis. A subset of subjects with 3 years consecutive lung function data was assessed for decline of lung function. Four single nucleotide polymorphisms (SNPs) tagging TNFalpha were genotyped using TaqMan(R) genotyping technologies and compared between subjects affected by each phenotype and those unaffected. Plasma TNFalpha levels were measured in all PiZZ subjects.ResultsAll SNPs were in Hardy-Weinberg equilibrium. A significant difference in rs361525 genotype (p = 0.01) and allele (p = 0.01) frequency was seen between subjects with and without chronic bronchitis, independent of the presence of other phenotypes. TNFalpha plasma level showed no phenotypic or genotypic associations.ConclusionVariation in TNFalpha is associated with chronic bronchitis in AATD.
Project description:Alpha-1 antitrypsin deficiency (AATD), a relatively common autosomal recessive genetic disorder, is underdiagnosed in symptomatic individuals. We sought to compare the risk of liver transplantation associated with hepatitis C infection with AATD heterozygotes and homozygotes and determine if SERPINA1 sequencing would identify undiagnosed AATD. We performed a retrospective cohort study in a deidentified Electronic Health Record (EHR)-linked DNA biobank with 72,027 individuals genotyped for the M, Z, and S alleles in SERPINA1. We investigated liver transplantation frequency by genotype group and compared with hepatitis C infection. We performed SERPINA1 sequencing in carriers of pathogenic AATD alleles who underwent liver transplantation. Liver transplantation was associated with the Z allele (ZZ: odds ratio [OR] = 1.31, p<2e-16; MZ: OR = 1.02, p = 1.2e-13) and with hepatitis C (OR = 1.20, p<2e-16). For liver transplantation, there was a significant interaction between genotype and hepatitis C (ZZ: interaction OR = 1.23, p = 4.7e-4; MZ: interaction OR = 1.11, p = 6.9e-13). Sequencing uncovered a second, rare, pathogenic SERPINA1 variant in six of 133 individuals with liver transplants and without hepatitis C. Liver transplantation was more common in individuals with AATD risk alleles (including heterozygotes), and AATD and hepatitis C demonstrated evidence of a gene-environment interaction in relation to liver transplantation. The current AATD screening strategy may miss diagnoses whereas SERPINA1 sequencing may increase diagnostic yield for AATD, stratify risk for liver disease, and inform clinical management for individuals with AATD risk alleles and liver disease risk factors.
Project description:Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell-mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease-inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress.
Project description:Clinical heterogeneity has been demonstrated in alpha-1 antitrypsin deficiency (AATD), such that clinical suspicion plays an important role in its diagnosis. The PiZZ genotype is the most common severe deficiency genotype and so tends to result in the worst clinical presentation, hence it has been the major focus of research. However, milder genotypes, especially PiSZ and PiMZ, are also linked to the development of lung and liver disease, mainly when unhealthy behaviors are present, such as smoking and alcohol use. Monitoring and managing AATD patients remains an area of active research. Lung function tests or computed tomography (CT) densitometry may allow physicians to identify progressive disease during follow up of patients, with a view to decision making about AATD-specific therapy, like augmentation therapy, or eventually surgical procedures such as lung volume reduction or transplant. Different types of biological markers have been suggested for disease monitoring and therapy selection, although most need further investigation. Intravenous augmentation therapy reduces the progression of emphysema in PiZZ patients and is available in many European countries, but its effect in milder deficiency is less certain. AATD has also been suggested to represent a risk factor and trigger for pulmonary infections, like those induced by mycobacteria. We summarize the last 5-10 years' key findings in AATD diagnosis, assessment, and management, with a focus on milder deficiency variants.
Project description:Chronic obstructive pulmonary disease (COPD) currently affects more than 16 million Americans and it is estimated that roughly 100,000 Americans have undiagnosed, severe alpha-1 antitrypsin deficiency (AATD) (Chest. 2005;128[3]:1179-1186) (Chest. 2002;122[5]:1818-1829). Patients with AATD have an accelerated rate of decline of lung function caused by proteolytic enzymes. The morbidity associated with this inherited disorder is preventable due to the availability of augmentation therapy. Appropriate inpatient screening of patients with COPD for AATD is lacking and most screening is exclusively limited to outpatient pulmonary clinics. Between May 2016 and February 2017, genetic screening was completed on 54 individuals who were admitted with either a former diagnosis of COPD or active COPD exacerbation to Arnot Ogden Medical Center (AOMC) in Elmira, New York. The incorporation of inpatient genetic screening by resident physicians for AATD in COPD patients led to a high rate of screened and newly diagnosed AATD carriers with a variety of AATD genotypes. It is recommended that there should be an expansion of screening for AATD in hospitalized patients with COPD, regardless of age or smoking history.
Project description:Background: Alpha-1 antitrypsin deficiency (A1ATD) is a progressive lung disease caused by inherited pathogenic variants in the SERPINA1 gene. However, their actual role in maintenance of structural and functional characteristics of the corresponding α-1 anti-trypsin (A1AT) protein is not well characterized. Methods: The A1ATD causative SERPINA1 missense variants were initially collected from variant databases, and they were filtered based on their pathogenicity potential. Then, the tertiary protein models were constructed and the impact of individual variants on secondary structure, stability, protein-protein interactions, and molecular dynamic (MD) features of the A1AT protein was studied using diverse computational methods. Results: We identified that A1ATD linked SERPINA1 missense variants like F76S, S77F, L278P, E288V, G216C, and H358R are highly deleterious as per the consensual prediction scores of SIFT, PolyPhen, FATHMM, M-CAP and REVEL computational methods. All these variants were predicted to alter free energy dynamics and destabilize the A1AT protein. These variants were seen to cause minor structural drifts at residue level (RMSD = <2Å) of the protein. Interestingly, S77F and L278P variants subtly alter the size of secondary structural elements like beta pleated sheets and loops. The residue level fluctuations at 100 ns simulation confirm the highly damaging structural consequences of all the six missense variants on the conformation dynamics of the A1AT protein. Moreover, these variants were also predicted to cause functional deformities by negatively impacting the binding energy of A1AT protein with NE ligand molecule. Conclusion: This study adds a new computational biology dimension to interpret the genotype-protein phenotype relationship between SERPINA1 pathogenic variants with its structural plasticity and functional behavior with NE ligand molecule contributing to the Alpha-1-antitrypsin deficiency. Our results support that A1ATD complications correlates with the conformational flexibility and its propensity of A1AT protein polymerization when misfolded.