Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. Total RNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2. Two-condition experiment, CON vs. ARDS lung tissues. replicates: 5 control, 7 ARDS. One replicate per array.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. miRNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2. Two-condition experiment, CON vs. ARDS lung tissues. replicates: 6 control, 6 ARDS. One replicate per array.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. Total RNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. miRNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2.
Project description:BackgroundAcute respiratory distress syndrome (ARDS) is a critical condition that is associated with high mortality and morbidity. Aerosolized prostacyclin has been used to improve oxygenation despite the limited evidence available so far.This review was originally published in 2010 and updated in 2017.ObjectivesTo assess the benefits and harms of aerosolized prostacyclin in adults and children with ARDS.Search methodsIn this update, we searched CENTRAL (2017, Issue 4); MEDLINE (OvidSP), Embase (OvidSP), ISI BIOSIS Previews, ISI Web of Science, LILACS, CINAHL (EBSCOhost), and three trials registers. We handsearched the reference lists of the latest reviews, randomized and non-randomized trials, and editorials, and cross-checked them with our search of MEDLINE. We contacted the main authors of included studies to request any missed, unreported or ongoing studies. The search was run from inception to 5 May 2017.Selection criteriaWe included all randomized controlled trials (RCTs), irrespective of publication status, date of publication, blinding status, outcomes published or language. We contacted trial investigators and study authors to retrieve relevant and missing data.Data collection and analysisThree authors independently abstracted data and resolved any disagreements by discussion. Our primary outcome measure was all-cause mortality. We planned to perform subgroup and sensitivity analyses to assess the effect of aerosolized prostacyclin in adults and children, and on various clinical and physiological outcomes. We assessed the risk of bias through assessment of methodological trial components and the risk of random error through trial sequential analysis.Main resultsWe included two RCTs with 81 participants.One RCT involved 14 critically ill children with ARDS (very low quality of evidence), and one RCT involved 67 critically ill adults (very low quality evidence).Only one RCT (paediatric trial) provided data on mortality and found no difference between intervention and control. However, this trial was eligible for meta-analysis due to a cross-over design.We assessed the benefits and harms of aerosolized prostacyclin. One RCT found no difference in improvement of partial pressure of oxygen in arterial blood/fraction of inspired oxygen (PaO2/FiO2) ratio (mean difference (MD) -25.35, 95% confidence interval (CI) -60.48 to 9.78; P = 0.16; 67 participants, very low quality evidence).There were no adverse events such as bleeding or organ dysfunction in any of the included trials. Due to the limited number of RCTs, we were unable to perform the prespecified subgroup and sensitivity analyses or trial sequential analysis.Authors' conclusionsWe are unable to tell from our results whether the intervention has an important effect on mortality because the results were too imprecise to rule out a small or no effect. Therefore, no current evidence supports or refutes the routine use of aerosolized prostacyclin for people with ARDS. There is an urgent need for more RCTs.
Project description:BackgroundThe goal of this study was to determine if IL-22:Fc would Acute Respiratory Distress Syndrome (ARDS).Summary background dataNo therapies exist for ARDS and treatment is purely supportive. Interleukin-22 (IL-22) plays an integral component in recovery of the lung from infection. IL-22:Fc is a recombinant protein with a human FC immunoglobulin that increases the half-life of IL-22.Study designARDS was induced in C57BL/6 mice with intra-tracheal lipopolysaccharide (LPS) at a dose of 33.3 or 100 ug. In the low-dose LPS group (LDG), IL-22:FC was administered via tail vein injection at 30 minutes (n = 9) and compared to sham (n = 9). In the high-dose LPS group (HDG), IL-22:FC was administered (n = 11) then compared to sham (n = 8). Euthanasia occurred after bronchioalveolar lavage (BAL) on post-injury day 4.ResultsIn the LDG, IL-22:FC resulted in decreased protein leak (0.15 vs. 0.25 ug/uL, p = 0.02). BAL protein in animals receiving IL-22:Fc in the HDG was not different. For the HDG, animals receiving IL-22:Fc had lower BAL cell counts (539,636 vs 3,147,556 cells/uL, p = 0.02). For the HDG, IL-6 (110.6 vs. 527.1 pg/mL, p = 0.04), TNF-α (5.87 vs. 25.41 pg/mL, p = 0.04), and G-CSF (95.14 vs. 659.6, p = 0.01) levels were lower in the BAL fluid of IL-22:Fc treated animals compared to sham.ConclusionsIL-22:Fc decreases lung inflammation and lung capillary leak in ARDS. IL-22:Fc may be a novel therapy for ARDS.
Project description:Acute respiratory distress syndrome (ARDS) is an acute diffuse inflammatory lung injury characterized by the damage of alveolar epithelial cells and pulmonary capillary endothelial cells. It is mainly manifested by non-cardiogenic pulmonary edema, resulting from intrapulmonary and extrapulmonary risk factors. ARDS is often accompanied by immune system disturbance, both locally in the lungs and systemically. As a common heterogeneous disease in critical care medicine, researchers are often faced with the failure of clinical trials. Latent class analysis had been used to compensate for poor outcomes and found that targeted treatment after subgrouping contribute to ARDS therapy. The subphenotype of ARDS caused by sepsis has garnered attention due to its refractory nature and detrimental consequences. Sepsis stands as the most predominant extrapulmonary cause of ARDS, accounting for approximately 32% of ARDS cases. Studies indicate that sepsis-induced ARDS tends to be more severe than ARDS caused by other factors, leading to poorer prognosis and higher mortality rate. This comprehensive review delves into the immunological mechanisms of sepsis-ARDS, the heterogeneity of ARDS and existing research on targeted treatments, aiming to providing mechanism understanding and exploring ideas for accurate treatment of ARDS or sepsis-ARDS.
Project description:Background: Acute respiratory distress syndrome (ARDS) is a severe and often fatal disease. The causes that lead to ARDS are multiple and include inhalation of salt water, smoke particles, or as a result of damage caused by respiratory viruses. ARDS can also arise due to systemic complications such as blood transfusions, sepsis, or pancreatitis. Unfortunately, despite a high mortality rate of 40%, there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies. Aim of review: A complication of ARDS is the development of pulmonary hypertension (PH); however, the mechanisms that lead to PH in ARDS are not fully understood. In this review, we summarize the known mechanisms that promote PH in ARDS. Key scientific concepts of review: (1) Provide an overview of acute respiratory distress syndrome; (2) delineate the mechanisms that contribute to the development of PH in ARDS; (3) address the implications of PH in the setting of coronavirus disease 2019 (COVID-19).