Project description:Introduction:Patients in the intensive care unit (ICU) have significantly disrupted sleep. Sleep disruption is believed to contribute to ICU delirium, and ICU delirium is associated with increased mortality. Experts recommend sleep promotion as a means of preventing or shortening the duration of delirium. ICU Sleep promotion protocols are highly complex and difficult to implement. Our objective is to describe the development, pilot implementation, and revision of a medical ICU sleep promotion protocol. Methods:Naptime is a clustered-care intervention that provides a rest period between 00:00 and 04:00. We used literature review, medical chart review, and stakeholder interviews to identify sources of overnight patient disturbance. With stakeholder input, we developed an initial protocol that we piloted on a small scale. Then, using protocol monitoring and stakeholder feedback, we revised Naptime and adapted it for unitwide implementation. Results:We identified sound, patient care, and patient anxiety as important sources of overnight disturbance. The pilot protocol altered the timing of routine care with a focus on medications and laboratory draws. During the pilot, there were frequent protocol violations for laboratory draws and for urgent care. Stakeholder feedback supported revision of the protocol with a focus on providing 60- to 120-minute rest periods interrupted by brief clusters of care between 00:00 and 04:00. Discussion:Four-hour blocks of rest may not be possible for all medical ICU patients, but interruptions can be minimized to a significant degree. Involvement of all stakeholders and frequent protocol reevaluation are needed for successful adoption of an overnight rest period.
Project description:Critically ill intensive care unit (ICU) patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decrease quality of life of survivors. Acute Quadriplegic Myopathy (AQM) is one of the most common neuromuscular disorders associated with ICU-acquired muscle weakness. Although there are no available treatments for the ICU-acquired muscle weakness, it has been demonstrated that early mobilization can improve its prognosis and functional outcomes. This study aims at improving our understanding of the effects of passive mechanical loading on skeletal muscle structure and function by using a unique experimental rat ICU model allowing analyses of the temporal sequence of changes in mechanically ventilated and pharmacologically paralyzed animals at durations varying from 6 h to 14 days. Results show that passive mechanical loading alleviated the muscle wasting and the loss of force-generation associated with the ICU intervention, resulting in a doubling of the functional capacity of the loaded vs. unloaded muscles after a 2-week ICU intervention. We demonstrated that the improved maintenance of muscle structure and function is likely a consequence of a reduced oxidative stress, and a reduced loss of the molecular motor protein myosin. A complex temporal gene expression pattern, delineated by microarray analysis, was observed with loading-induced changes in transcript levels of sarcomeric proteins, muscle developmental processes, stress response, ECM/cell adhesion proteins and metabolism. Thus, the results from this study show that passive mechanical loading alleviates the severe negative consequences on muscle structure and function associated with mechanical silencing in ICU patients, strongly supporting early and intense physical therapy in immobilized ICU patients. This study aims to unravel the effects of passive mechanical loading on skeletal muscle structure and function in an experimental rat ICU model at duration varying between 6h and 14 days. A total of 23 experimental female Sprague-Dawley rats were included in this study. The experimental rats were anaesthetized, treated with the neuromuscular blocking agent (NMBA) M-NM-1-cobrotoxin, mechanically ventilated and monitored for durations varying from 6h to 4 days (n=13), from 5 to 8 days (n=4), and from 9 to 14 days (n=6). The left leg of the animal was activated for 6 hours at the shortest duration and 12 hours per day at durations 12 hours and longer throughout the experiment, using a mechanical lever arm that produced a continuous passive maximal ankle joint flexions-extensions at a speed of 13.3 cycles per minute. Muscle biopsies were obtained from gastrocnemius muscle (proximal part) immediately after euthanasia, were quickly frozen in liquid propane cooled by liquid nitrogen, and stored at -80M-BM-0C. RNA was extracted.
Project description:Oral hygiene deficiency is common in patients treated in ICUs and it enables biofilm colonization by microorganisms that lead to respiratory infections. A 30-year-old female patient with chronic renal failure was hospitalized. Dental procedures were performed in the ICU and contributed to the patient's health after a few days.
Project description:Critically ill intensive care unit (ICU) patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decrease quality of life of survivors. Acute Quadriplegic Myopathy (AQM) is one of the most common neuromuscular disorders associated with ICU-acquired muscle weakness. Although there are no available treatments for the ICU-acquired muscle weakness, it has been demonstrated that early mobilization can improve its prognosis and functional outcomes. This study aims at improving our understanding of the effects of passive mechanical loading on skeletal muscle structure and function by using a unique experimental rat ICU model allowing analyses of the temporal sequence of changes in mechanically ventilated and pharmacologically paralyzed animals at durations varying from 6 h to 14 days. Results show that passive mechanical loading alleviated the muscle wasting and the loss of force-generation associated with the ICU intervention, resulting in a doubling of the functional capacity of the loaded vs. unloaded muscles after a 2-week ICU intervention. We demonstrated that the improved maintenance of muscle structure and function is likely a consequence of a reduced oxidative stress, and a reduced loss of the molecular motor protein myosin. A complex temporal gene expression pattern, delineated by microarray analysis, was observed with loading-induced changes in transcript levels of sarcomeric proteins, muscle developmental processes, stress response, ECM/cell adhesion proteins and metabolism. Thus, the results from this study show that passive mechanical loading alleviates the severe negative consequences on muscle structure and function associated with mechanical silencing in ICU patients, strongly supporting early and intense physical therapy in immobilized ICU patients.
Project description:Delirium is one of the most common behavioral manifestations of acute brain dysfunction in the intensive care unit (ICU) and is a strong predictor of worse outcome. Routine monitoring for delirium is recommended for all ICU patients using validated tools. In delirious patients, a search for all reversible precipitants is the first line of action and pharmacologic treatment should be considered when all causes have been ruled out, and it is not contraindicated. Long-term morbidity has significant consequences for survivors of critical illness and for their caregivers. ICU patients may develop posttraumatic stress disorder related to their critical illness experience.