Project description:BackgroundFragile X-associated tremor and ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder linked to the FMR1 premutation.ObjectivesFXTAS in women is far less common than in men, and this study represents the largest sample reported to date.MethodsA total of 53 female premutation carriers with FXTAS (meanage, 66.83 years; FXTAS stages 2-5) and 55 age-matched and demographic background-matched control participants (meanage, 61.94 years) underwent a comprehensive molecular, physiological, neuropsychological, and psychiatric assessment.ResultsThe large sample of female premutation carriers showed a wide range of variability of clinical signs and symptom progression. The imaging results showed a middle cerebellar peduncles sign in only 6 patients; another symptom included high-signal intensity in the splenium of the corpus callosum, and diffuse cerebral deep white matter changes (e.g., in the pons) are more common. The rate of psychiatric disorders, especially depression, is higher than in the general population. There is a clear impairment in executive functioning and fine motor skills in connection with a higher FXTAS stage.ConclusionsThe manifestation of FXTAS symptoms in female carriers can be diverse with a milder phenotype and a lower penetrance than those observed in male premutation carriers. The middle cerebellar peduncles sign is present in only a small percentage of the sample, and we propose that the imaging criteria for FXTAS in women need to be expanded.
Project description:Fragile X-associated tremor/ataxia syndrome is a late adult onset neurodegenerative disorder that affects individuals who carry a premutation CGG repeat expansion (55-200 CGG repeats) in the 5' untranslated portion of the fragile X mental retardation 1 (FMR1) gene. Affected individuals display cognitive decline, progressive intention tremor, gait ataxia, neuropathy, psychiatric symptoms, and parkinsonism; the severity of both clinical and neuropathological phenotypes is positively correlated with the extent of the CGG expansion. Overexpression of the expanded CGG repeat messenger RNA results in a direct gain-of-function cellular toxicity that is believed to form the pathogenic basis for fragile X-associated tremor/ataxia syndrome. This mechanism is entirely different from the mechanism giving rise to fragile X syndrome, which is due to transcriptional silencing and consequent loss of FMR1 protein. Much of the research in the field has focused on understanding the link between the pathogenic FMR1 messenger RNA and the potential proteins that interact with it.
Project description:BackgroundFragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disease affecting carriers of a 55-200 CGG repeat in the fragile X mental retardation 1 gene, may receive an initial diagnosis of Parkinson's disease (PD) or essential tremor (ET) due to overlapping motor symptoms. Therefore, tremor and bradykinesia were compared in these disorders using quantitative tremorography.MethodsThe inertial sensor based Kinesia ™ system was used to quantify upper extremity tremor and bradykinesia in participants with FXTAS (n = 25), PD (n = 23), ET (n = 18) and controls (n = 20) and regression analysis was performed to determine whether tremorography measures distinguished between the groups. The FXTAS Rating scale (FXTAS-RS) was administered to determine whether sub-score items on the clinician rated scale correlated with tremorography variables.ResultsFXTAS participants had reduced finger tap speed compared to those with ET, and ET had increased kinetic tremor compared to PD. Higher kinetic tremor distinguished FXTAS from PD (p = .02), and lower finger tap speed distinguished FXTAS from ET (p = .004). FXTAS-RS tremor and bradykinesia items correlated with tremorography measures (p = .005 to <0.0001).ConclusionsThis is the first quantitative study to compare tremor and bradykinesia in FXTAS, PD and ET. Kinetic tremor and bradykinesia measures using a quantitative inertial sensor system distinguished FXTAS from PD and ET, respectively. Such technologies may be useful for detecting precise tremor and bradykinesia abnormalities and distinguishing the tremor and bradykinesia profiles in each of these disorders.
Project description:Since its discovery in 2001, our understanding of fragile X-associated tremor/ataxia syndrome (FXTAS) has undergone a remarkable transformation. Initially characterized rather narrowly as an adult-onset movement disorder, the definition of FXTAS is broadening; moreover, the disorder is now recognized as only one facet of a much broader clinical pleiotropy among children and adults who carry premutation alleles of the FMR1 gene. Furthermore, the intranuclear inclusions of FXTAS, once thought to be a CNS-specific marker of the disorder, are now known to be widely distributed in multiple non-CNS tissues; this observation fundamentally changes our concept of the disease, and may provide the basis for understanding the diverse medical problems associated with the premutation. Recent work on the pathogenic mechanisms underlying FXTAS indicates that the origins of the late-onset neurodegenerative disorder actually lie in early development, raising the likelihood that all forms of clinical involvement among premutation carriers have a common underlying mechanistic basis. There has also been great progress in our understanding of the triggering event(s) in FXTAS pathogenesis, which is now thought to involve sequestration of one or more nuclear proteins involved with microRNA biogenesis. Moreover, there is mounting evidence that mitochondrial dysregulation contributes to the decreased cell function and loss of viability, evident in mice even during the neonatal period. Taken together, these recent findings offer hope for early interventions for FXTAS, well before the onset of overt disease, and for the treatment of other forms of clinical involvement among premutation carriers.
Project description:FXTAS (fragile X-associated tremor/ataxia syndrome) is a late-onset neurodegenerative disorder that affects individuals who are carriers of premutation expansions (55-200 CGG repeats) in the 5' untranslated region of the FMR1 (fragile X mental retardation 1) gene. The role of MD (mitochondrial dysfunction) in FXTAS was evaluated in fibroblasts and brain samples from premutation carriers with and without FXTAS symptoms, with a range of CGG repeats. This study resulted in several important conclusions: (i) decreased NAD- and FAD-linked oxygen uptake rates and uncoupling between electron transport and synthesis of ATP were observed in fibroblasts from premutation carriers; (ii) a lower expression of mitochondrial proteins preceded both in age and in CGG repeats the appearance of overt clinical involvement; (iii) the CGG repeat size required for altered mitochondrial protein expression was also smaller than that required to produce brain intranuclear inclusions from individuals with the premutation who died, suggesting that MD is an incipient pathological process occurring in individuals who do not display overt features of FXTAS; and (iv) on the basis of the CGG repeats, MD preceded the increase in oxidative/nitrative stress damage, indicating that the latter is a late event. MD in carriers of small CGG repeats, even when the allele size is not sufficient to produce FXTAS, may predispose them to other disorders (e.g. Parkinson's disease) that are likely to involve MD, and to environmental stressors, which may trigger the development of FXTAS symptoms. Detection of MD is of critical importance to the management of FXTAS, since it opens up additional treatment options for this disorder.
Project description:Background: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation CGG-repeat expansions (55-200 repeats) in the 5' non-coding portion of the fragile X mental retardation 1 (FMR1) gene. Core features of FXTAS include progressive tremor/ataxia, cognitive decline, variable brain volume loss, and white matter disease. The principal histopathological feature of FXTAS is the presence of central nervous system (CNS) and non-CNS intranuclear inclusions. Objective: To further elucidate the molecular underpinnings of FXTAS through the proteomic characterization of human FXTAS cortexes. Results: Proteomic analysis of FXTAS brain cortical tissue (n = 8) identified minor differences in protein abundance compared to control brains (n = 6). Significant differences in FXTAS relative to control brain predominantly involved decreased abundance of proteins, with the greatest decreases observed for tenascin-C (TNC), cluster of differentiation 38 (CD38), and phosphoserine aminotransferase 1 (PSAT1); proteins typically increased in other neurodegenerative diseases. Proteins with the greatest increased abundance include potentially novel neurodegeneration-related proteins and small ubiquitin-like modifier 1/2 (SUMO1/2). The FMRpolyG peptide, proposed in models of FXTAS pathogenesis but only identified in trace amounts in the earlier study of FXTAS inclusions, was not identified in any of the FXTAS or control brains in the current study. Discussion: The observed proteomic shifts, while generally relatively modest, do show a bias toward decreased protein abundance with FXTAS. Such shifts in protein abundance also suggest altered RNA binding as well as loss of cell-cell adhesion/structural integrity. Unlike other neurodegenerative diseases, the proteome of end-stage FXTAS does not suggest a strong inflammation-mediated degenerative response.