Project description:BackgroundVirchow-Robin spaces (VRS) have been associated with neurodegeneration and neuroinflammation. However, it remains uncertain to what degree non-dilated or dilated VRS reflect specific features of neuroinflammatory pathology. Thus, we aimed at investigating the clinical relevance of VRS as imaging biomarker in multiple sclerosis (MS) and to correlate VRS to their histopathologic signature.MethodsIn a cohort study comprising 142 MS patients and 30 control subjects, we assessed the association of non-dilated and dilated VRS to clinical and magnetic resonance imaging (MRI) outcomes. Findings were corroborated in a validation cohort comprising 63 MS patients. Brain blocks from 6 MS patients and 3 non-MS controls were histopathologically processed to correlate VRS to their tissue substrate.FindingsIn our actively treated clinical cohort, the count of dilated centrum semiovale VRS was associated with increased T1 and T2 lesion volumes. There was no systematic spatial colocalization of dilated VRS with MS lesions. At tissue level, VRS mostly corresponded to arteries and were not associated with MS pathological hallmarks. Interestingly, in our ex vivo cohort comprising mostly progressive MS patients, dilated VRS in MS were associated with signs of small vessel disease.InterpretationContrary to prior beliefs, these observations suggest that VRS in MS do not associate with an accumulation of immune cells. But instead, these findings indicate vascular pathology as a driver and/or consequence of neuroinflammatory pathology for this imaging feature.FundingNIH, Swedish Society for Medical Research, Swiss National Science Foundation and University of Zurich.
Project description:Dilated Virchow-Robin (VR) spaces are usually not considered to be symptomatic. We present three cases presenting with atypical clinical features, which otherwise had clinical/imaging findings consistent with idiopathic Parkinson's disease. In all cases, an isolated large VR space in the basal ganglia contralateral to the side of symptom onset was observed. We propose that the atypical features could be associated with the mass effect of a significantly enlarged VR space, which would cause a dysfunction downstream from the presynaptic nigrostriatal dopaminergic system.
Project description:The purpose of our study is to quantify the extent to which Virchow-Robin spaces (VRS) detected on in vivo MRI are reproducible by post-mortem MRI.Double Echo Steady State 3T MRIs were acquired post-mortem in 49 double- and 32 single-hemispheric formalin-fixed brain sections from 12 patients, who underwent conventional diagnostic 1.5 or 3T MRI in median 22 days prior to death (25% to 75%: 12 to 134 days). The overlap of in vivo and post-mortem VRS segmentations was determined accounting for potential confounding factors.The reproducibility of VRS found on in vivo MRI by post-mortem MRI, in the supratentorial white matter was in median 80% (25% to 75%: 60 to 100). A lower reproducibility was present in the basal ganglia, with a median of 47% (25% to 75%: 30 to 50).VRS segmentations were histologically confirmed in one double hemispheric section.Overall, the majority of VRS found on in vivo MRI was stable throughout death and formalin fixation, emphasizing the translational potential of post-mortem VRS studies.
Project description:BackgroundIn typical patients with multiple system atrophy with predominant parkinsonism (MSA-P) levodopa is ineffective. However, there are some of these patients who respond well to levodopa treatment. Levodopa efficacy in MSA-P patients is thought to be related to the degree of putaminal damage, but the pathological causation between the putaminal involvement and levodopa efficacy has not been established in detail.ObjectiveThis study aimed to evaluate the neuropathological features of the nigrostriatal dopaminergic system in a "levodopa-responsive" MSA-P patient in comparison with "levodopa-unresponsive" conventional MSA-P patients.Materials and methodsClinicopathological findings were assessed in a 53-year-old Japanese man with MSA who presented with asymmetric parkinsonism, levodopa response, and later wearing-off phenomenon. During autopsy, the nigrostriatal pathology of presynaptic and postsynaptic dopaminergic receptor density and α-synuclein status were investigated. The other two patients with MSA-P were examined using the same pathological protocol.ResultsFour years after the onset, the patient died of sudden cardiopulmonary arrest. On autopsy, numerous α-synuclein-positive glial cytoplasmic inclusions in the basal ganglia, pons, and cerebellum were identified. The number of neurons in the putamen and immunoreactivity for dopamine receptors were well-preserved. In contrast, significant neuronal loss and decreased dopamine receptor immunoreactivity in the putamen were observed in the "levodopa-unresponsive" MSA-P control patients. These putaminal pathology results were consistent with the findings of premortem magnetic resonance imaging (MRI). All three patients similarly exhibited severe neuronal loss in the substantia nigra and decreased immunoreactivity for dopamine transporter.ConclusionLevodopa responsiveness in patients with MSA-P may be corroborated by the normal putamen on MRI and the preserved postsynaptic nigrostriatal dopaminergic system on pathological examination. The results presented in this study may provide a rationale for continuation of levodopa treatment in patients diagnosed with MSA-P.
Project description:Here, we introduced a patient with Mn-induced parkinsonism who was responsive to intranasal insulin, and his parkinsonism and dystonia responded to this treatment.