Integrative omics analysis in Pandanus odorifer (Forssk.) Kuntze reveals the role of Asparagine synthetase in salinity tolerance.
Ontology highlight
ABSTRACT: Pandanus odorifer (Forssk) Kuntze grows naturally along the coastal regions and withstands salt-sprays as well as strong winds. A combination of omics approaches and enzyme activity studies was employed to comprehend the mechanistic basis of high salinity tolerance in P. odorifer. The young seedlings of P. odorifer were exposed to 1 M salt stress for up to three weeks and analyzed using RNAsequencing (RNAseq) and LC-MS. Integrative omics analysis revealed high expression of the Asparagine synthetase (AS) (EC 6.3.5.4) (8.95 fold) and remarkable levels of Asparagine (Asn) (28.5 fold). This indicated that salt stress promoted Asn accumulation in P. odorifer. To understand this further, the Asn biosynthesis pathway was traced out in P. odorifer. It was noticed that seven genes involved in Asn bisynthetic pathway namely glutamine synthetase (GS) (EC 6.3.1.2) glutamate synthase (GOGAT) (EC 1.4.1.14), aspartate kinase (EC 2.7.2.4), pyruvate kinase (EC 2.7.1.40), aspartate aminotransferase (AspAT) (EC 2.6.1.1), phosphoenolpyruvate carboxylase (PEPC) (EC 4.1.1.31) and AS were up-regulated under salt stress. AS transcripts were most abundant thereby showed its highest activity and thus were generating maximal Asn under salt stress. Also, an up-regulated Na+/H+ antiporter (NHX1) facilitated compartmentalization of Na+ into vacuoles, suggesting P. odorifer as salt accumulator species.
SUBMITTER: Rashmi D
PROVIDER: S-EPMC6353967 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA