Unknown

Dataset Information

0

Personalized Prediction of Acquired Resistance to EGFR-Targeted Inhibitors Using a Pathway-Based Machine Learning Approach.


ABSTRACT: Epidermal growth factor receptor (EGFR) inhibitors have benefitted cancer patients worldwide, but resistance inevitably develops over time, resulting in treatment failures. An accurate prediction model for acquired resistance (AR) to EGFR inhibitors is critical for early diagnosis and according intervention, but is not yet available due to personal variations and the complex mechanisms of AR. Here, we have developed a novel pipeline to build a meta-analysis-based, multivariate model for personalized pathways in AR to EGFR inhibitors, using sophisticated machine learning algorithms. Surprisingly, the model achieved excellent predictive performance, with a cross-study validation area under curve (AUC) of over 0.9, and generalization performance on independent cohorts of samples, with a perfect AUC score of 1. Furthermore, the model showed excellent transferability across different cancer cell lines and EGFR inhibitors, including gefitinib, erlotinib, afatinib, and cetuximab. In conclusion, our model achieved high predictive accuracy through robust cross study validation, and enabled individualized prediction on newly introduced data. We also discovered common pathway alteration signatures for AR to EGFR inhibitors, which can provide directions for other follow-up studies.

SUBMITTER: Kim YR 

PROVIDER: S-EPMC6357167 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Personalized Prediction of Acquired Resistance to EGFR-Targeted Inhibitors Using a Pathway-Based Machine Learning Approach.

Kim Young Rae YR   Kim Yong Wan YW   Lee Suh Eun SE   Yang Hye Won HW   Kim Sung Young SY  

Cancers 20190104 1


Epidermal growth factor receptor (EGFR) inhibitors have benefitted cancer patients worldwide, but resistance inevitably develops over time, resulting in treatment failures. An accurate prediction model for acquired resistance (AR) to EGFR inhibitors is critical for early diagnosis and according intervention, but is not yet available due to personal variations and the complex mechanisms of AR. Here, we have developed a novel pipeline to build a meta-analysis-based, multivariate model for personal  ...[more]

Similar Datasets

| S-EPMC6473276 | biostudies-literature
| S-EPMC7920380 | biostudies-literature
| S-EPMC10764785 | biostudies-literature
| S-EPMC9437169 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC5026573 | biostudies-literature
| S-EPMC3146072 | biostudies-literature
| S-EPMC2954193 | biostudies-literature
| S-EPMC9259982 | biostudies-literature
| S-EPMC4893648 | biostudies-literature