Unknown

Dataset Information

0

Excess vascular endothelial growth factor-A disrupts pericyte recruitment during blood vessel formation.


ABSTRACT: Pericyte investment into new blood vessels is essential for vascular development such that mis-regulation within this phase of vessel formation can contribute to numerous pathologies including arteriovenous and cerebrovascular malformations. It is critical therefore to illuminate how angiogenic signaling pathways intersect to regulate pericyte migration and investment. Here, we disrupted vascular endothelial growth factor-A (VEGF-A) signaling in ex vivo and in vitro models of sprouting angiogenesis, and found pericyte coverage to be compromised during VEGF-A perturbations. Pericytes had little to no expression of VEGF receptors, suggesting VEGF-A signaling defects affect endothelial cells directly but pericytes indirectly. Live imaging of ex vivo angiogenesis in mouse embryonic skin revealed limited pericyte migration during exposure to exogenous VEGF-A. During VEGF-A gain-of-function conditions, pericytes and endothelial cells displayed abnormal transcriptional changes within the platelet-derived growth factor-B (PDGF-B) and Notch pathways. To further test potential crosstalk between these pathways in pericytes, we stimulated embryonic pericytes with Notch ligands Delta-like 4 (Dll4) and Jagged-1 (Jag1) and found induction of Notch pathway activity but no changes in PDGF Receptor-? (Pdgfr?) expression. In contrast, PDGFR? protein levels decreased with mis-regulated VEGF-A activity, observed in the effects on full-length PDGFR? and a truncated PDGFR? isoform generated by proteolytic cleavage or potentially by mRNA splicing. Overall, these observations support a model in which, during the initial stages of vascular development, pericyte distribution and coverage are indirectly affected by endothelial cell VEGF-A signaling and the downstream regulation of PDGF-B-PDGFR? dynamics, without substantial involvement of pericyte Notch signaling during these early stages.

SUBMITTER: Darden J 

PROVIDER: S-EPMC6360133 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Excess vascular endothelial growth factor-A disrupts pericyte recruitment during blood vessel formation.

Darden Jordan J   Payne Laura Beth LB   Zhao Huaning H   Chappell John C JC  

Angiogenesis 20180920 1


Pericyte investment into new blood vessels is essential for vascular development such that mis-regulation within this phase of vessel formation can contribute to numerous pathologies including arteriovenous and cerebrovascular malformations. It is critical therefore to illuminate how angiogenic signaling pathways intersect to regulate pericyte migration and investment. Here, we disrupted vascular endothelial growth factor-A (VEGF-A) signaling in ex vivo and in vitro models of sprouting angiogene  ...[more]

Similar Datasets

| S-EPMC4907724 | biostudies-literature
| S-EPMC2788982 | biostudies-literature
| S-EPMC6981345 | biostudies-literature
| S-EPMC6182264 | biostudies-literature
| S-EPMC7939123 | biostudies-literature
2020-09-05 | GSE157507 | GEO
2024-02-01 | GSE243313 | GEO
| S-EPMC2118625 | biostudies-literature
| S-EPMC6710257 | biostudies-literature
| S-EPMC2766657 | biostudies-literature