Unknown

Dataset Information

0

Acoustic Emission from Porous Collapse and Moving Dislocations in Granular Mg-Ho Alloys under Compression and Tension.


ABSTRACT: We identified heterogeneous Mg-Ho alloys as an ideal material to measure the most extensive acoustic emission spectra available. Mg-Ho alloys are porous and show a high density of dislocations, which slide under external tension and compression. These dislocations nucleate near numerous heterogeneities. Two mechanisms compete under external forcing in the structural collapse, namely collapsing holes and the movements of dislocations. Their respective fingerprints in acoustic emission (AE) measurements are very different and relate to their individual signal strengths. Porous collapse generates very strong AE signals while dislocation movements create more but weaker AE signals. This allows the separation of the two processes even though they almost always coincide temporarily. The porous collapse follows approximately mean-field behavior (ε = 1.4, τ' = 1.82, α = 2.56, x = 1.93, χ = 1.95) with mean field scaling fulfilled. The exponents for dislocation movement are greater (ε = 1.92, τ' = 2.44, α = 3.0, x = 1.7, χ = 1.42) and follows approximately the force integrated mean-field predictions. The Omori scaling is similar for both mechanisms. The Bath's law is well fulfilled for the porous collapse but not for the dislocation movements. We suggest that such 'complex' mixing behavior is dominant in many other complex materials such as (multi-) ferroics, entropic alloys and porous ferroelastics, and, potentially, homogeneous materials with the simultaneous appearance of different collapse mechanisms.

SUBMITTER: Chen Y 

PROVIDER: S-EPMC6361990 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5824803 | biostudies-other
| S-EPMC4995491 | biostudies-literature
| S-EPMC8446014 | biostudies-literature
| S-EPMC7867242 | biostudies-literature
| S-EPMC5141485 | biostudies-literature
| S-EPMC3907240 | biostudies-literature
| S-EPMC4772127 | biostudies-other
| S-EPMC7998028 | biostudies-literature
| S-EPMC5452864 | biostudies-literature
| S-EPMC4551631 | biostudies-literature