ABSTRACT: Clip-domain serine proteases (Clip-SPs) mediate innate immunity and embryonic development in insects. However, the function of Clip-SPs in Apis cerana cerana is little known. Here, a Clip-SP gene, AccSp1, was identified. AccSp1 was mainly detected in third and sixth day instar larvae, dark-eyed pupae, and adults (1and 30 days post-emergence). In addition, AccSp1 was expressed at its highest level in the venom gland and epidermis than tentacle, abdomen, muscle, honey sac, head, leg, chest, hemolymph, rectum, and midgut. AccSp1 was induced by 4, 24, and 44 °C; H2O2; CdCl2; HgCl2; and pesticides (paraquat, pyridaben, and methomyl) and was inhibited by UV light and cyhalothrin treatments. When adults that had been pretreated with dsRNA 6 h prior (knocking AccSp1 down) were challenged with Bacillus bombysepticus for 18 h, the survival rate of bees greatly decreased, the activity of PO (phenoloxidase) was reduced, revealing that AccSp1 may play a critical role in assisting bees to survive the microbial infection and participate in regulating PO activity. The antioxidant enzymatic activities of catalase, peroxidase, and superoxide dismutase; the contents of hydrogen peroxide and malondialdehyde; and the ratio of NADP+/NADPH were all lower in samples containing dsRNA-AccSp1 interference than in control groups, but the content of carbonyl was not significantly different. These findings suggest the knockdown of AccSp1 may influence melanization so that the antioxidant enzyme activities and the harmful metabolites decreased. These results collectively suggest that AccSp1 plays critical roles in abiotic stresses responses and resistance to pathogens.