Project description:Cystic fibrosis (CF) is a fatal genetic disease associated with widespread exocrine gland dysfunction. Studies have suggested activating effects of resveratrol, a naturally-occurring polyphenol compound with antioxidant and anti-inflammatory properties, on CF transmembrane conductance regulator (CFTR) protein function. We assayed, in F508del-CFTR homozygous (CF) and in wild-type mice, the effect of resveratrol on salivary secretion in basal conditions, in response to inhibition by atropine (basal β-adrenergic-dependent component) and to stimulation by isoprenaline (CFTR-dependent component). Both components of the salivary secretion were smaller in CF mice than in controls. Two hours after intraperitoneal administration of resveratrol (50 mg/kg) dissolved in DMSO, the compound was detected in salivary glands. As in both CF and in wild-type mice, DMSO alone increased the response to isoprenaline in males but not in females, the effect of resveratrol was only measured in females. In wild-type mice, isoprenaline increased secretion by more than half. In CF mice, resveratrol rescued the response to isoprenaline, eliciting a 2.5-fold increase of β-adrenergic-stimulated secretion. We conclude that the salivary secretion assay is suitable to test DMSO-soluble CFTR modulators in female mice. We show that resveratrol applied in vivo to mice reaches salivary glands and increases β-adrenergic secretion. Immunolabelling of CFTR in human bronchial epithelial cells suggests that the effect is associated with increased CFTR protein expression. Our data support the view that resveratrol is beneficial for treating CF. The salivary secretion assay has a potential application to test efficacy of novel CF therapies.
Project description:Cystic fibrosis (CF), caused by biallelic inactivating mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, has recently been categorized as a familial colorectal cancer (CRC) syndrome. CF patients are highly susceptible to early, aggressive colorectal tumor development. Endoscopic screening studies have revealed that by the age of forty 50% of CF patients will develop adenomas, with 25% developing aggressive advanced adenomas, some of which will have already advanced to adenocarcinomas. This enhanced risk has led to new CF colorectal cancer screening recommendations, lowering the initiation of endoscopic screening to age forty in CF patients, and to age thirty in organ transplant recipients. The enhanced risk for CRC also extends to the millions of people (more than 10 million in the US) who are heterozygous carriers of CFTR gene mutations. Further, lowered expression of CFTR is reported in sporadic CRC, where downregulation of CFTR is associated with poor survival. Mechanisms underlying the actions of CFTR as a tumor suppressor are not clearly understood. Dysregulation of Wnt/?-catenin signaling and disruption of intestinal stem cell homeostasis and intestinal barrier integrity, as well as intestinal dysbiosis, immune cell infiltration, stress responses, and intestinal inflammation have all been reported in human CF patients and in animal models. Notably, the development of new drug modalities to treat non-gastrointestinal pathologies in CF patients, especially pulmonary disease, offers hope that these drugs could be repurposed for gastrointestinal cancers.
Project description:To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco) improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32-143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (-) ivacaftor, 3 only (+) ivacaftor and 3 (+/-) ivacaftor (1-5 tests per condition). The total number of gland measurements was 852 (-) ivacaftor and 906 (+) ivacaftor. A healthy control was tested 4 times (51 glands). For each gland we measured both CFTR-independent (M-sweat) and CFTR-dependent (C-sweat); C-sweat was stimulated with a ?-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects). By contrast, 6/6 subjects (113/342 glands) produced C-sweat in the (+) ivacaftor condition, but with large inter-subject differences; 3-74% of glands responded with C/M sweat ratios 0.04%-2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+) ivacaftor ?= 1.6%-7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function.
Project description:Defects in a single gene lead to the defective proteins that cause cystic fibrosis, making the disease an ideal candidate for mutation-targeted therapy. Although ivacaftor is currently the only FDA-approved CFTR modifier, others are in development.
Project description:ObjectiveCystic fibrosis-related diabetes (CFRD) without fasting hyperglycemia (CFRD FH-) is not associated with microvascular or macrovascular complications, leading to controversy about the need for treatment. The Cystic Fibrosis Related Diabetes Therapy (CFRDT) Trial sought to determine whether diabetes therapy improves BMI in these patients.Research design and methodsA three-arm multicenter randomized trial compared 1 year of therapy with premeal insulin aspart, repaglinide, or oral placebo in subjects with cystic fibrosis who had abnormal glucose tolerance.ResultsOne hundred adult patients were enrolled. Eighty-one completed the study, including 61 with CFRD FH- and 20 with severly impaired glucose tolerance (IGT). During the year before therapy, BMI declined in all groups. Among the group with CFRD FH-, insulin-treated patients lost 0.30 +/- 0.21 BMI units the year before therapy. After 1 year of insulin therapy, this pattern reversed, and they gained 0.39 +/- 21 BMI units (P = 0.02). No significant change in the rate of BMI decline was seen in placebo-treated patients (P = 0.45). Repaglinide-treated patients had an initial significant BMI gain (0.53 +/- 0.19 BMI units, P = 0.01), but this effect was not sustained. After 6 months of therapy they lost weight so that by 12 months there was no difference in the rate of BMI change during the study year compared with the year before (P = 0.33). Among patients with IGT, neither insulin nor repaglinide affected the rate of BMI decline. No significant differences were seen in the rate of lung function decline or the number of hospitalizations in any group.ConclusionsInsulin therapy safely reversed chronic weight loss in patients with CFRD FH-.
Project description:Cystic fibrosis (CF) is caused by the functional expression defect of the CF transmembrane conductance regulator (CFTR) chloride channel at the apical plasma membrane. Impaired bacterial clearance and hyperactive innate immune response are hallmarks of the CF lung disease, yet the existence of and mechanism accounting for the innate immune defect that occurs before infection remain controversial. Inducible expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuated the proinflammatory cytokines interleukin-6 (IL-6), IL-8, and CXCL1/2 in two human respiratory epithelial models under air-liquid but not liquid-liquid interface culture. Expression of wild-type but not the inactive G551D-CFTR indicates that secretion of the chemoattractant IL-8 is inversely proportional to CFTR channel activity in cftr(∆F508/∆F508) immortalized and primary human bronchial epithelia. Similarly, direct but not P2Y receptor-mediated activation of TMEM16A attenuates IL-8 secretion in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport at the apical membrane may contribute to the excessive and persistent lung inflammation in CF and perhaps in other respiratory diseases associated with documented down-regulation of CFTR (e.g., chronic obstructive pulmonary disease). Direct pharmacological activation of TMEM16A offers a potential therapeutic strategy to reduce the inflammation of CF airway epithelia.
Project description:Fluid and HCO(3)(-) secretion are vital functions of the pancreatic duct and other secretory epithelia. CFTR and Cl(-)/HCO(3)(-) exchange activity at the luminal membrane are required for these functions. The molecular identity of the Cl(-)/HCO(3)(-) exchangers and their relationship with CFTR in determining fluid and HCO(3)(-) secretion are not known. We show here that the Cl(-)/HCO(3)(-) exchanger slc26a6 controls CFTR activity and ductal fluid and HCO(3)(-) secretion. Unexpectedly, deletion of slc26a6 in mice and measurement of fluid and HCO(3)(-) secretion into sealed intralobular pancreatic ducts revealed that deletion of slc26a6 enhanced spontaneous and decreased stimulated secretion. Remarkably, inhibition of CFTR activity with CFTR(inh)-172, knock-down of CFTR by siRNA and measurement of CFTR current in WT and slc26a6(-/-) duct cells revealed that deletion of slc26a6 resulted in dis-regulation of CFTR activity by removal of tonic inhibition of CFTR by slc26a6. These findings reveal the intricate regulation of CFTR activity by slc26a6 in both the resting and stimulated states and the essential role of slc26a6 in pancreatic HCO(3)(-) secretion in vivo.
Project description:For cystic fibrosis (CF) patients most therapies focus on alleviating the disease symptoms. Yet the cellular basis of the disease has been well studied; mutations in the CF gene can impair folding, secretion, cell surface stability, and/or function of the CFTR chloride channel. Correction of these basic defects has been a challenge, but indicates that a deeper understanding of the molecular and cellular mechanism of mutations is a prerequisite for developing more efficient therapies.
Project description:Despite the addition of cystic fibrosis transmembrane conductance regulator (CFTR) modulators to the cystic fibrosis (CF) treatment regimen, patients with CF continue to suffer from chronic bacterial infections that lead to progressive respiratory morbidity. Host immunity, and macrophage dysfunction specifically, has an integral role in the inability of patients with CF to clear bacterial infections. We sought to characterize macrophage responses to CFTR modulator treatment as we hypothesized that there would be differential effects based on patient genotype. Human CF and non-CF peripheral blood monocyte-derived macrophages (MDMs) were analyzed for CFTR expression, apoptosis, polarization, phagocytosis, bacterial killing, and cytokine production via microscopy, flow cytometry, and ELISA-based assays. Compared to non-CF MDMs, CF MDMs display decreased CFTR expression, increased apoptosis, and decreased phagocytosis. CFTR expression increased and apoptosis decreased in response to ivacaftor or lumacaftor/ivacaftor therapy, and phagocytosis improved with ivacaftor alone. Ivacaftor restored CF macrophage polarization responses to non-CF levels and reduced Pseudomonas aeruginosa bacterial burden, but did not reduce other bacterial loads. Macrophage inflammatory cytokine production decreased in response to ivacaftor alone. In summary, ivacaftor and lumacaftor/ivacaftor have differential impacts on macrophage function with minimal changes observed in CF patients treated with lumacaftor/ivacaftor. Overall improvements in macrophage function in ivacaftor-treated CF patients result in modestly improved macrophage-mediated bacterial killing.
Project description:BackgroundF508del-CFTR, the most frequent disease-causing mutation among Caucasian cystic fibrosis (CF) patients, has been characterised as a mutant defective in protein folding, processing and trafficking. We have investigated the two neighbouring cytokeratin genes KRT8 and KRT18 in a candidate gene approach to ask whether variants in KRT8 and/or KRT18 modify the impaired ion conductance known as the CF basic defect, and whether they are associated with correct trafficking of mutant CFTR and disease severity of CF.MethodsWe have selected contrasting F508del-CFTR homozygous patient subpopulations stratified for disease severity, comparing 13 concordant mildly affected sib pairs vs. 12 concordant severely affected sib pairs, or manifestation of the CF basic defect in intestinal epithelium, comparing 22 individuals who exhibit CFTR-mediated residual chloride secretion vs. 14 individuals who do not express any chloride secretion, for an association. The KRT8/KRT18 locus was initially interrogated with one informative microsatellite marker. Subsequently, a low density SNP map with four SNPs in KRT8 and two SNPs in KRT18, each selected for high polymorphism content, was used to localize the association signal.ResultsKRT8, but not KRT18, showed an association with CF disease severity (Pbest=0.00131; Pcorr=0.0185) and CFTR mediated residual chloride secretion (Pbest=0.0004; Pcorr=0.0069). Two major four-marker-haplotypes spanning 13 kb including the entire KRT8 gene accounted for 90% of chromosomes, demonstrating strong linkage disequilibrium at that locus. Absence of chloride secretion was associated with the recessive haplotype 1122 at rs1907671, rs4300473, rs2035878 and rs2035875. The contrasting haplotype 2211 was dominant for the presence of CFTR mediated residual chloride secretion. In consistency, the KRT8 haplotype 2211 was associated with mild CF disease while 1122 was observed as risk haplotype. Analysis of microsatellite allele distributions on the SNP background suggests that the mild KRT8 haplotype 2211 is phylogenetically older than its severe counterpart.ConclusionsThe two opposing KRT8 alleles which have been identified as a benign and as a risk allele in this work are likely effective in the context of epithelial cell differentiation. As the mild KRT8 allele is associated with CFTR mediated residual chloride secretion among F508del-CFTR homozygotes, the KRT8/KRT18 heterodimeric intermediary filaments of the cytoskeleton apparently are an essential component for the proper targeting of CFTR to the apical membrane in epithelial cells.