Unknown

Dataset Information

0

Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq.


ABSTRACT: BACKGROUND:Citrus plants are commercially propagated by grafting, with the rootstock variety influencing a number of horticultural traits, including drought tolerance. Among the different rootstock varieties available for citrus propagation, 'Rangpur' lime is known to confer enhanced tolerance to drought as compared to other citrus rootstocks. The objective of this study was to investigate the poorly understood molecular responses underlying the rootstock-induced drought tolerance in sweet orange. RESULTS:RNA-Seq transcriptome analysis was carried out in leaves of sweet orange grafted on 'Rangpur' lime subjected to control and drought-stress treatments, under greenhouse conditions, using the Illumina HiSeq platform. A total of 41,827 unique transcripts were identified, among which 1764 transcripts showed significant variation (P???0.001) between the treatments, with 1081 genes induced and 683 repressed by drought-stress treatment. The transcripts were distributed in 44 different categories of cellular component, molecular function and biological process. Several genes related to cell metabolism, including those involved in the metabolisms of cell wall, carbohydrates and antioxidants, light reactions, biotic and abiotic stress responses, as well as genes coding for transcription factors (TFs), protein kinases (PKs) and proteins involved in the abscisic acid (ABA) and ethylene signaling pathways, were differentially regulated by drought stress. RNA-Seq data were validated by quantitative real-time PCR (qPCR) analysis and comparative analysis of expression of the selected genes between sweet orange grafted on drought-tolerant and -sensitive rootstocks revealed new candidate genes for drought tolerance in citrus. CONCLUSIONS:In conclusion, our results showed that only a relatively small but functionally diverse fraction of the sweet orange transcriptome, with functions in metabolism, cellular responses and regulation, was differentially regulated by drought stress. The data suggest that the rootstock-induced drought tolerance in sweet orange includes the transcriptional activation of genes related to the cell wall, soluble carbohydrate and antioxidant metabolisms, biotic and abiotic stress responses, TFs, PKs and ABA signaling pathway, and the downregulation of genes involved in the starch metabolism, light reactions and ethylene signaling. Future efforts to elucidate their functional roles and explore their potential in the citrus genetic improvement should benefit from this data.

SUBMITTER: Goncalves LP 

PROVIDER: S-EPMC6364419 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq.

Gonçalves Luana P LP   Boscariol Camargo Raquel L RL   Takita Marco Aurélio MA   Machado Marcos A MA   Dos Soares Filho Walter S WS   Costa Marcio G C MGC  

BMC genomics 20190206 1


<h4>Background</h4>Citrus plants are commercially propagated by grafting, with the rootstock variety influencing a number of horticultural traits, including drought tolerance. Among the different rootstock varieties available for citrus propagation, 'Rangpur' lime is known to confer enhanced tolerance to drought as compared to other citrus rootstocks. The objective of this study was to investigate the poorly understood molecular responses underlying the rootstock-induced drought tolerance in swe  ...[more]

Similar Datasets

| S-EPMC5575116 | biostudies-literature
| S-EPMC4875703 | biostudies-literature
| S-EPMC9228058 | biostudies-literature
2021-11-03 | GSE151051 | GEO
| S-EPMC7387466 | biostudies-literature
| S-EPMC8537572 | biostudies-literature
| S-EPMC5340773 | biostudies-literature
| S-EPMC10857618 | biostudies-literature
| S-EPMC4658043 | biostudies-literature
| S-EPMC7279474 | biostudies-literature