Quantifying the contrast of the human locus coeruleus in vivo at 7 Tesla MRI.
Ontology highlight
ABSTRACT: The locus coeruleus is a small brainstem nucleus which contains neuromelanin cells and is involved in a number of cognitive functions such as attention, arousal and stress, as well as several neurological and psychiatric disorders. Locus coeruleus imaging in vivo is generally performed using a T1-weighted turbo spin echo MRI sequence at 3 Tesla (T). However, imaging at high magnetic field strength can increase the signal-to-noise ratio and offers the possibility of imaging at higher spatial resolution. Therefore, in the present study we explored the possibility of visualizing the locus coeruleus at 7T. To this end, twelve healthy volunteers participated in three scanning sessions: two with 3T MRI and one with 7T MRI. The volumes of the first 3T session were used to segment the locus coeruleus, whereas the volumes of the second 3T and the 7T session were used to quantify the contrast of the locus coeruleus with several reference regions across eight different structural sequences. The results indicate that several of the 7T sequences provide detectable contrast between the locus coeruleus and surrounding tissue. Of the tested sequences, a T1-weighted sequence with spectral presaturation inversion recovery (SPIR) seems the most promising method for visualizing the locus coeruleus at ultra-high field MRI. While there is insufficient evidence to prefer the 7T SPIR sequence over the 3T TSE sequence, the isotropic voxels at 7T are an important advantage when visualizing small structures such as the locus coeruleus.
SUBMITTER: Tona KD
PROVIDER: S-EPMC6364884 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA