Unknown

Dataset Information

0

A-Kinase Anchoring Protein 13 (AKAP13) Augments Progesterone Signaling in Uterine Fibroid Cells.


ABSTRACT: Context:Uterine leiomyomata (fibroids) are prevalent sex hormone?dependent tumors with an altered response to mechanical stress. Ulipristal acetate, a selective progesterone receptor (PR) modulator, significantly reduces fibroid size in patients. However, PR signaling in fibroids and its relationship to mechanical signaling are incompletely understood. Objective:Our prior studies revealed that A-kinase anchoring protein 13 (AKAP13) was overexpressed in fibroids and contributed to altered mechanotransduction in fibroids. Because AKAP13 augmented nuclear receptor signaling in other tissues, we sought to determine whether AKAP13 might influence PR signaling in fibroids. Methods and Results:Fibroid samples from patients treated with ulipristal acetate or placebo were examined for AKAP13 expression by using immunohistochemistry. In immortalized uterine fibroid cell lines and COS-7 cells, we observed that AKAP13 increased ligand-dependent PR activation of luciferase reporters and endogenous progesterone-responsive genes for PR-B but not PR-A. Inhibition of ERK reduced activation of PR-dependent signaling by AKAP13, but inhibition of p38 MAPK had no effect. In addition, glutathione S-transferase?binding assays revealed that AKAP13 was bound to PR-B through its carboxyl terminus. Conclusion:These data suggest an intersection of mechanical signaling and PR signaling involving AKAP13 through ERK. Further elucidation of the integration of mechanical and hormonal signaling pathways in fibroids may provide insight into fibroid development and suggest new therapeutic strategies for treatment.

SUBMITTER: Ng SSM 

PROVIDER: S-EPMC6365770 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A-Kinase Anchoring Protein 13 (AKAP13) Augments Progesterone Signaling in Uterine Fibroid Cells.

Ng Sinnie Sin Man SSM   Jorge Soledad S   Malik Minnie M   Britten Joy J   Su Szu-Chi SC   Armstrong Charles R CR   Brennan Joshua T JT   Chang Sydney S   Baig Kimberlyn Maravet KM   Driggers Paul H PH   Segars James H JH  

The Journal of clinical endocrinology and metabolism 20190301 3


<h4>Context</h4>Uterine leiomyomata (fibroids) are prevalent sex hormone‒dependent tumors with an altered response to mechanical stress. Ulipristal acetate, a selective progesterone receptor (PR) modulator, significantly reduces fibroid size in patients. However, PR signaling in fibroids and its relationship to mechanical signaling are incompletely understood.<h4>Objective</h4>Our prior studies revealed that A-kinase anchoring protein 13 (AKAP13) was overexpressed in fibroids and contributed to  ...[more]

Similar Datasets

| S-EPMC4572088 | biostudies-literature
| S-EPMC8284923 | biostudies-literature
| S-EPMC4076359 | biostudies-literature
| S-EPMC3081024 | biostudies-literature
| S-EPMC4588825 | biostudies-literature
| S-EPMC3298676 | biostudies-literature
| S-EPMC8262231 | biostudies-literature
| S-EPMC3434527 | biostudies-literature
| S-EPMC8570464 | biostudies-literature
| S-EPMC4647484 | biostudies-literature