Unknown

Dataset Information

0

Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment.


ABSTRACT: Radiation therapy has been used for many years to treat tumors based on its DNA-damage-mediated ability to kill cells. More recently, RT has been shown to exert beneficial modulatory effects on immune responses, such as triggering immunogenic cell death, enhancing antigen presentation, and activating cytotoxic T cells. Consequently, combining radiation therapy with immunotherapy represents an important area of research. Thus far, immune-checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been the focus of many research studies and clinical trials. The available data suggest that such immunotherapies are enhanced when combined with radiation therapy. However, treatment resistance, intrinsic or acquired, is still prevalent. Various theories as to how to enhance these combination therapies to overcome treatment resistance have been proposed. In this review, we focus on the principles surrounding radiation therapy's positive and negative effects on the tumor microenvironment. We explore mechanisms underlying radiation therapy's synergistic and antagonistic effects on immune responses and provide a base of knowledge for radio-immunology combination therapies to overcome treatment resistance. We provide evidence for targeting regulatory T cells, tumor-associated macrophages, and cancer-associated fibroblasts in combination radio-immunotherapies to improve cancer treatment.

SUBMITTER: Darragh LB 

PROVIDER: S-EPMC6366147 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment.

Darragh Laurel B LB   Oweida Ayman J AJ   Karam Sana D SD  

Frontiers in immunology 20190131


Radiation therapy has been used for many years to treat tumors based on its DNA-damage-mediated ability to kill cells. More recently, RT has been shown to exert beneficial modulatory effects on immune responses, such as triggering immunogenic cell death, enhancing antigen presentation, and activating cytotoxic T cells. Consequently, combining radiation therapy with immunotherapy represents an important area of research. Thus far, immune-checkpoint inhibitors targeting programmed death-ligand 1 (  ...[more]

Similar Datasets

| S-EPMC4494107 | biostudies-literature
| S-EPMC8280353 | biostudies-literature
| S-EPMC8880405 | biostudies-literature
| S-EPMC5650456 | biostudies-literature
| S-EPMC7409093 | biostudies-literature
| S-EPMC10232794 | biostudies-literature
| S-EPMC4101987 | biostudies-literature
| S-EPMC9515652 | biostudies-literature
| S-EPMC6913466 | biostudies-literature
| S-EPMC10457008 | biostudies-literature