Project description:Hamilton's rule states that cooperation will evolve if the fitness cost to actors is less than the benefit to recipients multiplied by their genetic relatedness. This rule makes many simplifying assumptions, however, and does not accurately describe social evolution in organisms such as microbes where selection is both strong and nonadditive. We derived a generalization of Hamilton's rule and measured its parameters in Myxococcus xanthus bacteria. Nonadditivity made cooperative sporulation remarkably resistant to exploitation by cheater strains. Selection was driven by higher-order moments of population structure, not relatedness. These results provide an empirically testable cooperation principle applicable to both microbes and multicellular organisms and show how nonlinear interactions among cells insulate bacteria against cheaters.
Project description:How generally Hamilton's rule holds is a much debated question. The answer to that question depends on how costs and benefits are defined. When using the regression method to define costs and benefits, there is no scope for violations of Hamilton's rule. We introduce a general model for assortative group compositions to show that, when using the counterfactual method for computing costs and benefits, there is room for violations. The model also shows that there are limitations to observing violations in equilibrium, as the discrepancies between Hamilton's rule and the direction of selection may imply that selection will take the population out of the region of disagreement, precluding observations of violations in equilibrium. Given what it takes to create a violation, empirical tests of Hamilton's rule, both in and out of equilibrium, require the use of statistical models that allow for identifying non-linearities in the fitness function.
Project description:Hamilton’s rule [W. D. Hamilton, Am. Nat. 97, 354–356 (1963); W. D. Hamilton, J. Theor. Biol. 7, 17–52 (1964)] quantifies the central evolutionary ideas of inclusive fitness and kin selection into a simple algebraic relationship. Evidence consistent with Hamilton’s rule is found in many animal species. A drawback of investigating Hamilton’s rule in these species is that one can estimate whether a given behavior is consistent with the rule, but a direct examination of the exact cutoff for altruistic behavior predicted by Hamilton is almost impossible. However, to the degree that economic resources confer survival benefits in modern society, Hamilton’s rule may be applicable to economic decision-making, in which case techniques from experimental economics offer a way to determine this cutoff. We employ these techniques to examine whether Hamilton’s rule holds in human decision-making, by measuring the dependence between an experimental subject’s maximal willingness to pay for a gift of $50 to be given to someone else and the genetic relatedness of the subject to the gift’s recipient. We find good agreement with the predictions of Hamilton’s rule. Moreover, regression analysis of the willingness to pay versus genetic relatedness, the number of years living in the same residence, age, and sex shows that almost all the variation is explained by genetic relatedness. Similar but weaker results are obtained from hypothetical questions regarding the maximal risk to her own life that the subject is willing to take in order to save the recipient’s life.
Project description:Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing--with good reason--almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution.
Project description:Investment by helpers in cooperative breeding systems is extremely variable among species, but this variation is currently unexplained. Inclusive fitness theory predicts that, all else being equal, cooperative investment should correlate positively with the relatedness of helpers to the recipients of their care. We test this prediction in a comparative analysis of helper investment in 36 cooperatively breeding bird species. We show that species-specific helper contributions to cooperative brood care increase as the mean relatedness between helpers and recipients increases. Helper contributions are also related to the sex ratio of helpers, but neither group size nor the proportion of nests with helpers influence helper effort. Our findings support the hypothesis that variation in helping behaviour among cooperatively breeding birds is consistent with Hamilton's rule, indicating a key role for kin selection in the evolution of cooperative investment in social birds.
Project description:A fundamental problem in biology is understanding the evolutionary emergence and maintenance of altruistic behaviors. A well-recognized conceptual insight is provided by a general mathematical relation, Hamilton's rule. This rule can in principle be invoked to explain natural examples of cooperation, but measuring the variables that it involves is a particularly challenging problem and controlling these variables experimentally an even more daunting task. Here, we overcome these difficulties by using a simple synthetic microbial system of producers and nonproducers of an extracellular growth-enhancing molecule, which acts as a 'common good.' For this system, we are able to manipulate the intrinsic growth difference between producers and nonproducers, as well as the impact of the common good on the growth rate of its recipients. Our synthetic system is thus uniquely suited for studying the relation between the parameters entering Hamilton's rule and the quantities governing the systems' behavior. The experimental results highlight a crucial effect of nonlinearities in the response to the common good, which in general tend to limit the predictive value of Hamilton's rule.
Project description:Inclusive fitness theory provides the conceptual framework for our current understanding of social evolution, and empirical studies suggest that kin selection is a critical process in the evolution of animal sociality. A key prediction of inclusive fitness theory is that altruistic behaviour evolves when the costs incurred by an altruist (c) are outweighed by the benefit to the recipient (b), weighted by the relatedness of altruist to recipient (r), i.e. Hamilton's rule rb > c. Despite its central importance in social evolution theory, there have been relatively few empirical tests of Hamilton's rule, and hardly any among cooperatively breeding vertebrates, leading some authors to question its utility. Here, we use data from a long-term study of cooperatively breeding long-tailed tits Aegithalos caudatus to examine whether helping behaviour satisfies Hamilton's condition for the evolution of altruism. We show that helpers are altruistic because they incur survival costs through the provision of alloparental care for offspring. However, they also accrue substantial benefits through increased survival of related breeders and offspring, and despite the low average relatedness of helpers to recipients, these benefits of helping outweigh the costs incurred. We conclude that Hamilton's rule for the evolution of altruistic helping behaviour is satisfied in this species.
Project description:A fundamental aspect of all biological systems is cooperation. Cooperative interactions are required for many levels of biological organization ranging from single cells to groups of animals. Human society is based to a large extent on mechanisms that promote cooperation. It is well known that in unstructured populations, natural selection favours defectors over cooperators. There is much current interest, however, in studying evolutionary games in structured populations and on graphs. These efforts recognize the fact that who-meets-whom is not random, but determined by spatial relationships or social networks. Here we describe a surprisingly simple rule that is a good approximation for all graphs that we have analysed, including cycles, spatial lattices, random regular graphs, random graphs and scale-free networks: natural selection favours cooperation, if the benefit of the altruistic act, b, divided by the cost, c, exceeds the average number of neighbours, k, which means b/c > k. In this case, cooperation can evolve as a consequence of 'social viscosity' even in the absence of reputation effects or strategic complexity.
Project description:Insufficient sleep is associated with cardiometabolic disease and poor health. However, few studies have assessed its determinants in a nationally representative sample. Data from the 2009 behavioral risk factor surveillance system were used (N = 323,047 adults). Insufficient sleep was assessed as insufficient rest/sleep over 30 days. This was evaluated relative to sociodemographics (age, sex, race/ethnicity, marital status, region), socioeconomics (education, income, employment, insurance), health behaviors (diet, exercise, smoking, alcohol), and health/functioning (emotional support, BMI, mental/physical health). Overall, insufficient sleep was associated with being female, White or Black/African-American, unemployed, without health insurance, and not married; decreased age, income, education, physical activity; worse diet and overall health; and increased household size, alcohol, and smoking. These factors should be considered as risk factors for insufficient sleep.
Project description:Social parasites exploit the brood-care behaviour and social structure of one or more host species. Within the social Hymenoptera there are different types of social parasitism. In its extreme form, species of obligate social parasites, or inquilines, do not have the worker caste and depend entirely on the workers of a host species to raise their reproductive offspring. The strict form of Emery's rule states that social parasites share immediate common ancestry with their hosts. Moreover, this rule has been linked with a sympatric origin of inquilines from their hosts. Here, we conduct phylogenetic analyses of yellowjackets and hornets based on 12 gene fragments and evaluate competing evolutionary scenarios to test Emery's rule. We find that inquilines, as well as facultative social parasites, are not the closest relatives of their hosts. Therefore, Emery's rule in its strict sense is rejected, suggesting that social parasites have not evolved sympatrically from their hosts in yellowjackets and hornets. However, the relaxed version of the rule is supported, as inquilines and their hosts belong to the same Dolichovespula clade. Furthermore, inquilinism has evolved only once in Dolichovespula.