Predicting evolutionarily stable strategies from functional responses of Sonoran Desert annuals to precipitation.
Ontology highlight
ABSTRACT: For many decades, researchers have studied how plants use bet-hedging strategies to insure against unpredictable, unfavourable conditions. We improve upon earlier analyses by explicitly accounting for how variable precipitation affects annual plant species' bet-hedging strategies. We consider how the survival rates of dormant seeds (in a 'seed bank') interact with precipitation responses to influence optimal germination strategies. Specifically, we incorporate how response to resource availability (i.e. the amount of offspring (seeds) generated per plant in response to variation in desert rainfall) influences the evolution of germination fractions. Using data from 10 Sonoran Desert annual plants, we develop models that explicitly include these responses to model fitness as a function of precipitation. For each of the species, we identify the predicted evolutionarily stable strategies (ESSs) for the fraction of seeds germinating each year and then compare our estimated ESS values to the observed germination fractions. We also explore the relative importance of seed survival and precipitation responses in shaping germination strategies by regressing ESS values and observed germination fractions against these traits. We find that germination fractions are lower for species with higher seed survival, with lower reproductive success in dry years, and with better yield responses in wet years. These results illuminate the evolution of bet-hedging strategies in an iconic system, and provide a framework for predicting how current and future environmental conditions may reshape those strategies.
SUBMITTER: Cuello WS
PROVIDER: S-EPMC6367162 | biostudies-literature | 2019 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA