Unknown

Dataset Information

0

Positron Emission Tomography Imaging of the Gastrin-Releasing Peptide Receptor with a Novel Bombesin Analogue.


ABSTRACT: The gastrin-releasing peptide receptor (GRPR), a G protein-coupled receptor, is overexpressed in solid malignancies and particularly in prostate cancer. We synthesized a novel bombesin derivative, [68Ga]Ga-ProBOMB1, evaluated its pharmacokinetics and potential to image GRPR expression with positron emission tomography (PET), and compared it with [68Ga]Ga-NeoBOMB1. ProBOMB1 (DOTA-pABzA-DIG-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-?(CH2N)-Pro-NH2) was synthesized by solid-phase peptide synthesis. The polyaminocarboxylate chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to the N-terminal and separated from the GRPR-targeting sequence by a p-aminomethylaniline-diglycolic acid (pABzA-DIG) linker. The binding affinity to GRPR was determined using a cell-based competition assay, whereas the agonist/antagonist property was determined with a calcium efflux assay. ProBOMB1 was radiolabeled with 68GaCl3. PET imaging and biodistribution studies were performed in male immunocompromised mice bearing PC-3 prostate cancer xenografts. Blocking experiments were performed with coinjection of [d-Phe6,Leu-NHEt13,des-Met14]bombesin(6-14). Dosimetry calculations were performed with OLINDA software. ProBOMB1 and the nonradioactive Ga-ProBOMB were obtained in 1.1 and 67% yield, respectively. The K i value of Ga-ProBOMB1 for GRPR was 3.97 ± 0.76 nM. Ga-ProBOMB1 behaved as an antagonist for GRPR. [68Ga]Ga-ProBOMB1 was obtained in 48.2 ± 10.9% decay-corrected radiochemical yield with 121 ± 46.9 GBq/?mol molar activity and >95% radiochemical purity. Imaging/biodistribution studies showed that the excretion of [68Ga]Ga-ProBOMB1 was primarily through the renal pathway. At 1 h postinjection (p.i.), PC-3 tumor xenografts were clearly delineated in PET images with excellent contrast. The tumor uptake for [68Ga]Ga-ProBOMB1 was 8.17 ± 2.57 percent injected dose per gram (% ID/g) and 9.83 ± 1.48% ID/g for [68Ga]Ga-NeoBOMB1, based on biodistribution studies at 1 h p.i. This corresponded to tumor-to-blood and tumor-to-muscle uptake ratios of 20.6 ± 6.79 and 106 ± 57.7 for [68Ga]Ga-ProBOMB1 and 8.38 ± 0.78 and 39.0 ± 12.6 for [68Ga]Ga-NeoBOMB1, respectively. Blockade with [d-Phe6,Leu-NHEt13,des-Met14]bombesin(6-14) significantly reduced the average uptake of [68Ga]Ga-ProBOMB1 in tumors by 62%. The total absorbed dose was lower for [68Ga]Ga-ProBOMB1 in all organs except for bladder compared with [68Ga]Ga-NeoBOMB1. Our data suggest that [68Ga]Ga-ProBOMB1 is an excellent radiotracer for imaging GRPR expression with PET. [68Ga]Ga-ProBOMB1 achieved a similar uptake as [68Ga]Ga-NeoBOMB1 in tumors, with enhanced contrast and lower whole-body absorbed dose.

SUBMITTER: Lau J 

PROVIDER: S-EPMC6372246 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Positron Emission Tomography Imaging of the Gastrin-Releasing Peptide Receptor with a Novel Bombesin Analogue.

Lau Joseph J   Rousseau Etienne E   Zhang Zhengxing Z   Uribe Carlos F CF   Kuo Hsiou-Ting HT   Zeisler Jutta J   Zhang Chengcheng C   Kwon Daniel D   Lin Kuo-Shyan KS   Bénard François F  

ACS omega 20190116 1


The gastrin-releasing peptide receptor (GRPR), a G protein-coupled receptor, is overexpressed in solid malignancies and particularly in prostate cancer. We synthesized a novel bombesin derivative, [<sup>68</sup>Ga]Ga-ProBOMB1, evaluated its pharmacokinetics and potential to image GRPR expression with positron emission tomography (PET), and compared it with [<sup>68</sup>Ga]Ga-NeoBOMB1. ProBOMB1 (DOTA-pABzA-DIG-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ψ(CH<sub>2</sub>N)-Pro-NH<sub>2</sub>) was synthesiz  ...[more]

Similar Datasets

| S-EPMC50817 | biostudies-other
| S-EPMC5411699 | biostudies-literature
| S-EPMC8233351 | biostudies-literature
| S-EPMC6469173 | biostudies-literature
| S-EPMC7922638 | biostudies-literature
| S-EPMC41671 | biostudies-other
| S-EPMC4926532 | biostudies-literature
| S-EPMC3258617 | biostudies-literature
2015-02-09 | E-MTAB-3175 | biostudies-arrayexpress
| 2288221 | ecrin-mdr-crc