Unknown

Dataset Information

0

The polygenic nature of telomere length and the anti-ageing properties of lithium.


ABSTRACT: Telomere length is a promising biomarker for age-related disease and a potential anti-ageing drug target. Here, we study the genetic architecture of telomere length and the repositioning potential of lithium as an anti-ageing medication. LD score regression applied to the largest telomere length genome-wide association study to-date, revealed SNP-chip heritability estimates of 7.29%, with polygenic risk scoring capturing 4.4% of the variance in telomere length in an independent cohort (p?=?6.17?×?10-5). Gene-enrichment analysis identified 13 genes associated with telomere length, with the most significant being the leucine rich repeat gene, LRRC34 (p?=?3.69?×?10-18). In the context of lithium, we confirm that chronic use in a sample of 384 bipolar disorder patients is associated with longer telomeres (p?=?0.03). As complementary evidence, we studied three orthologs of telomere length regulators in a Caenorhabditis elegans model of lithium-induced extended longevity and found all transcripts to be affected post-treatment (p??0.05). Consequently, this suggests that lithium may be catalysing the activity of endogenous mechanisms that promote telomere lengthening, whereby its efficacy eventually becomes limited by each individual's inherent telomere maintenance capabilities. Our work indicates a potential use of polygenic risk scoring for the prediction of adult telomere length and consequently lithium's anti-ageing efficacy.

SUBMITTER: Coutts F 

PROVIDER: S-EPMC6372618 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

The polygenic nature of telomere length and the anti-ageing properties of lithium.

Coutts Fiona F   Palmos Alish B AB   Duarte Rodrigo R R RRR   de Jong Simone S   Lewis Cathryn M CM   Dima Danai D   Powell Timothy R TR  

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 20181218 4


Telomere length is a promising biomarker for age-related disease and a potential anti-ageing drug target. Here, we study the genetic architecture of telomere length and the repositioning potential of lithium as an anti-ageing medication. LD score regression applied to the largest telomere length genome-wide association study to-date, revealed SNP-chip heritability estimates of 7.29%, with polygenic risk scoring capturing 4.4% of the variance in telomere length in an independent cohort (p = 6.17   ...[more]

Similar Datasets

| S-EPMC8492471 | biostudies-literature
| S-EPMC4664383 | biostudies-literature
| S-EPMC6033543 | biostudies-literature
| S-EPMC3993829 | biostudies-other
| S-EPMC7808927 | biostudies-literature
| S-EPMC8863872 | biostudies-literature
| S-EPMC9289283 | biostudies-literature
| S-EPMC4634197 | biostudies-literature
2014-07-17 | E-GEOD-48973 | biostudies-arrayexpress
| S-EPMC5687939 | biostudies-literature