A tissue-specific enhancer of the C. elegans nhr-67/tailless gene drives coordinated expression in uterine stem cells and the differentiated anchor cell.
Ontology highlight
ABSTRACT: The nhr-67 nuclear receptor gene of Caenorhabditis elegans encodes the ortholog of the Drosophila tailless and vertebrate Tlx genes. In C. elegans, nhr-67 plays multiple roles in the development of the uterus during L2 and L3 larval stages. Four pre-VU cells are born in the L2 stage and form the precursor complement for the ventral surface of the mature uterus. One of the four pre-VU cells becomes the anchor cell (AC), which exits the cell cycle and differentiates, while the remaining three VU cells serve as stem cells that populate the ventral uterus. The nhr-67 gene functions in the development of both VU cell lineages and AC differentiation. Hypomorphic mutations in nhr-67 identify a 276bp region of the distal promoter that is sufficient to activate nhr-67 expression in pre-VU cells and the AC. The 276bp region includes 8 conserved potential cis-acting sites, including two E boxes and a nuclear receptor binding site. Mutational analysis demonstrates that the two E boxes are required for expression of nhr-67 in uterine precursor cells. The E/daughterless ortholog HLH-2 binds these sites as a homodimer, thus playing a central role in activating nhr-67 expression in the uterine precursors. At least two other binding activities, one of which may be the nhr-25/Ftz-F1 nuclear receptor transcription factor, also contribute to uterine precursor cell expression. The organization of the nhr-67 uterine precursor enhancer is compared to similar conserved enhancers in the egl-43, lag-2, and lin-3 genes, which contain the same HLH-2-binding E boxes and are similarly expressed in both pre-VU cells and the AC. This basic regulatory module allows the coordinated expression of at least four genes. Expression of genes in different cells that must coordinate to form a mature organ is driven by a shared set of promoter elements, which integrate multiple transcription factor inputs.
SUBMITTER: Bodofsky S
PROVIDER: S-EPMC6373727 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA