Unknown

Dataset Information

0

Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis.


ABSTRACT: The objective of this study was to evaluate the performance of a new version of quantusFLM®, a software tool for prediction of neonatal respiratory morbidity (NRM) by ultrasound, which incorporates a fully automated fetal lung delineation based on Deep Learning techniques. A set of 790 fetal lung ultrasound images obtained at 24?+?0-38?+?6 weeks' gestation was evaluated. Perinatal outcomes and the occurrence of NRM were recorded. quantusFLM® version 3.0 was applied to all images to automatically delineate the fetal lung and predict NRM risk. The test was compared with the same technology but using a manual delineation of the fetal lung, and with a scenario where only gestational age was available. The software predicted NRM with a sensitivity, specificity, and positive and negative predictive value of 71.0%, 94.7%, 67.9%, and 95.4%, respectively, with an accuracy of 91.5%. The accuracy for predicting NRM obtained with the same texture analysis but using a manual delineation of the lung was 90.3%, and using only gestational age was 75.6%. To sum up, automated and non-invasive software predicted NRM with a performance similar to that reported for tests based on amniotic fluid analysis and much greater than that of gestational age alone.

SUBMITTER: Burgos-Artizzu XP 

PROVIDER: S-EPMC6374419 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis.

Burgos-Artizzu Xavier P XP   Perez-Moreno Álvaro Á   Coronado-Gutierrez David D   Gratacos Eduard E   Palacio Montse M  

Scientific reports 20190213 1


The objective of this study was to evaluate the performance of a new version of quantusFLM®, a software tool for prediction of neonatal respiratory morbidity (NRM) by ultrasound, which incorporates a fully automated fetal lung delineation based on Deep Learning techniques. A set of 790 fetal lung ultrasound images obtained at 24 + 0-38 + 6 weeks' gestation was evaluated. Perinatal outcomes and the occurrence of NRM were recorded. quantusFLM® version 3.0 was applied to all images to automatically  ...[more]

Similar Datasets

| S-EPMC5625293 | biostudies-literature
| S-EPMC9409975 | biostudies-literature
| S-EPMC4032424 | biostudies-other
| S-EPMC6357223 | biostudies-literature
| S-EPMC9174049 | biostudies-literature
| S-EPMC9151662 | biostudies-literature
| S-EPMC6107118 | biostudies-literature
| S-EPMC10899245 | biostudies-literature
| S-EPMC5640956 | biostudies-literature