Unknown

Dataset Information

0

Selective Capture and Purification of MicroRNAs and Intracellular Proteins through Antisense-vectorized Magnetic Nanobeads.


ABSTRACT: MicroRNAs (miRNAs) are small non-coding nucleotides playing a crucial role in posttranscriptional expression and regulation of target genes in nearly all kinds of cells. In this study, we demonstrate a reliable and efficient capture and purification of miRNAs and intracellular proteins using magnetic nanoparticles functionalized with antisense oligonucleotides. For this purpose, a tumor suppressor miRNA (miR-198), deregulated in several human cancer types, was chosen as the model oligonucleotide. Magnetite nanoparticles carrying the complementary sequence of miR-198 (miR-198 antisense) on their surface were delivered into cells and subsequently used for the extracellular transport of miRNA and proteins. The successful capture of miR-198 was demonstrated by isolating RNA from magnetic nanoparticles followed by real-time PCR quantification. Our experimental data showed that antisense-coated particles captured 5-fold higher amounts of miR-198 when compared to the control nanoparticles. Moreover, several proteins that could play a significant role in miR-198 biogenesis were found attached to miR-198 conjugated nanoparticles and analyzed by mass spectrometry. Our findings demonstrate that a purpose-driven vectorization of magnetic nanobeads with target-specific recognition ligands is highly efficient in selectively transporting miRNA and disease-relevant proteins out of cells and could become a reliable and useful tool for future diagnostic, therapeutic and analytical applications.

SUBMITTER: Gessner I 

PROVIDER: S-EPMC6375918 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6091500 | biostudies-literature
| S-EPMC6155070 | biostudies-literature
| S-EPMC4869635 | biostudies-literature
| S-EPMC7588987 | biostudies-literature
| S-EPMC6044991 | biostudies-literature
| S-EPMC7718476 | biostudies-literature
| S-EPMC8694497 | biostudies-literature
| S-EPMC6091499 | biostudies-literature
| S-EPMC4174403 | biostudies-literature
| S-EPMC5667439 | biostudies-literature