Unknown

Dataset Information

0

Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals.


ABSTRACT: The photofixation and utilization of CO2 via single-electron mechanism is considered to be a clean and green way to produce high-value-added commodity chemicals with long carbon chains. However, this topic has not been fully explored for the highly negative reduction potential in the formation of reactive carbonate radical. Herein, by taking Bi2O3 nanosheets as a model system, we illustrate that oxygen vacancies confined in atomic layers can lower the adsorption energy of CO2 on the reactive sites, and thus activate CO2 by single-electron transfer in mild conditions. As demonstrated, Bi2O3 nanosheets with rich oxygen vacancies show enhanced generation of •CO2- species during the reaction process and achieve a high conversion yield of dimethyl carbonate (DMC) with nearly 100% selectivity in the presence of methanol. This study establishes a practical way for the photofixation of CO2 to long-chain chemicals via defect engineering.

SUBMITTER: Chen S 

PROVIDER: S-EPMC6377667 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Oxygen vacancy associated single-electron transfer for photofixation of CO<sub>2</sub> to long-chain chemicals.

Chen Shichuan S   Wang Hui H   Kang Zhixiong Z   Jin Sen S   Zhang Xiaodong X   Zheng Xusheng X   Qi Zeming Z   Zhu Junfa J   Pan Bicai B   Xie Yi Y  

Nature communications 20190215 1


The photofixation and utilization of CO<sub>2</sub> via single-electron mechanism is considered to be a clean and green way to produce high-value-added commodity chemicals with long carbon chains. However, this topic has not been fully explored for the highly negative reduction potential in the formation of reactive carbonate radical. Herein, by taking Bi<sub>2</sub>O<sub>3</sub> nanosheets as a model system, we illustrate that oxygen vacancies confined in atomic layers can lower the adsorption  ...[more]

Similar Datasets

| S-EPMC7960986 | biostudies-literature
| S-EPMC8319429 | biostudies-literature
| S-EPMC7125230 | biostudies-literature
| S-EPMC6664412 | biostudies-literature
| S-EPMC9241016 | biostudies-literature
| S-EPMC5612984 | biostudies-literature
| S-EPMC6641130 | biostudies-literature
| S-EPMC8602285 | biostudies-literature
| S-EPMC6604238 | biostudies-literature
| S-EPMC8346554 | biostudies-literature