Unknown

Dataset Information

0

Histone acetyltransferase CBP is critical for conventional effector and memory T-cell differentiation in mice.


ABSTRACT: Compared with naïve T cells, memory CD8+ T cells have a transcriptional landscape and proteome that are optimized to generate a more rapid and robust response to secondary infection. Additionally, rewired kinase signal transduction pathways likely contribute to the superior recall response of memory CD8+ T cells, but this idea has not been experimentally confirmed. Herein, we utilized an MS approach to identify proteins that are phosphorylated on tyrosine residues in response to Listeria-induced T-cell receptor (TCR) stimulation in both naïve and memory CD8+ T cells from mice and separated by fluorescence- and flow cytometry-based cell sorting. This analysis identified substantial differences in tyrosine kinase signaling networks between naïve and memory CD8+ T cells. We also observed that an important axis in memory CD8+ T cells couples Janus kinase 2 (JAK2) hyperactivation to the phosphorylation of CREB-binding protein (CBP). Functionally, JAK2-catalyzed phosphorylation enabled CBP to bind with higher affinity to acetylated histone peptides, indicating a potential epigenetic mechanism that could contribute to rapid initiation of transcriptional programs in memory CD8+ T cells. Moreover, we found that CBP itself is essential for conventional effector and memory CD8+ T-cell formation. These results indicate how signaling pathways are altered to promote CD8+ memory cell formation and rapid responses to and protection from repeat infections.

SUBMITTER: Piccirillo AR 

PROVIDER: S-EPMC6378974 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Histone acetyltransferase CBP is critical for conventional effector and memory T-cell differentiation in mice.

Piccirillo Ann R AR   Cattley Richard T RT   D'Cruz Louise M LM   Hawse William F WF  

The Journal of biological chemistry 20181220 7


Compared with naïve T cells, memory CD8<sup>+</sup> T cells have a transcriptional landscape and proteome that are optimized to generate a more rapid and robust response to secondary infection. Additionally, rewired kinase signal transduction pathways likely contribute to the superior recall response of memory CD8<sup>+</sup> T cells, but this idea has not been experimentally confirmed. Herein, we utilized an MS approach to identify proteins that are phosphorylated on tyrosine residues in respon  ...[more]

Similar Datasets

| S-EPMC2704754 | biostudies-literature
| S-EPMC3517098 | biostudies-literature
| S-EPMC162251 | biostudies-literature
| S-EPMC3578118 | biostudies-literature
| S-EPMC6896766 | biostudies-literature
| S-EPMC5387060 | biostudies-literature
| S-EPMC2811879 | biostudies-literature
| S-EPMC6247617 | biostudies-literature
| S-EPMC2574607 | biostudies-literature
| S-EPMC3076313 | biostudies-literature