Unknown

Dataset Information

0

Globally correlated conformational entropy underlies positive and negative cooperativity in a kinase's enzymatic cycle.


ABSTRACT: Enzymes accelerate the rate of chemical transformations by reducing the activation barriers of uncatalyzed reactions. For signaling enzymes, substrate recognition, binding, and product release are often rate-determining steps in which enthalpy-entropy compensation plays a crucial role. While the nature of enthalpic interactions can be inferred from structural data, the molecular origin and role of entropy in enzyme catalysis remains poorly understood. Using thermocalorimetry, NMR, and MD simulations, we studied the conformational landscape of the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous phosphoryl transferase involved in a myriad of cellular processes. Along the enzymatic cycle, the kinase exhibits positive and negative cooperativity for substrate and nucleotide binding and product release. We found that globally coordinated changes of conformational entropy activated by ligand binding, together with synchronous and asynchronous breathing motions of the enzyme, underlie allosteric cooperativity along the kinase's cycle.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC6379427 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Globally correlated conformational entropy underlies positive and negative cooperativity in a kinase's enzymatic cycle.

Wang Yingjie Y   V S Manu M   Kim Jonggul J   Li Geoffrey G   Ahuja Lalima G LG   Aoto Philip P   Taylor Susan S SS   Veglia Gianluigi G  

Nature communications 20190218 1


Enzymes accelerate the rate of chemical transformations by reducing the activation barriers of uncatalyzed reactions. For signaling enzymes, substrate recognition, binding, and product release are often rate-determining steps in which enthalpy-entropy compensation plays a crucial role. While the nature of enthalpic interactions can be inferred from structural data, the molecular origin and role of entropy in enzyme catalysis remains poorly understood. Using thermocalorimetry, NMR, and MD simulat  ...[more]

Similar Datasets

| S-EPMC3037720 | biostudies-literature
| S-EPMC5056064 | biostudies-literature
| S-EPMC9337769 | biostudies-literature
| S-EPMC9793311 | biostudies-literature
| S-EPMC10540246 | biostudies-literature
| S-EPMC3248003 | biostudies-literature
| S-EPMC2012979 | biostudies-other
| S-EPMC5184821 | biostudies-literature
| S-EPMC4300553 | biostudies-literature
| S-EPMC4156320 | biostudies-literature