Rapid Recapitulation of Nonalcoholic Steatohepatitis upon Loss of Host Cell Factor 1 Function in Mouse Hepatocytes
Ontology highlight
ABSTRACT: Host-cell factor 1 (HCF-1), encoded by the ubiquitously expressed X-linked gene Hcfc1, is an epigenetic coregulator important for mouse development and cell proliferation, including during liver regeneration. We used a hepatocyte-specific inducible Hcfc1 knock-out allele (called Hcfc1hepKO), to induce HCF-1 loss in hepatocytes of hemizygous Hcfc1hepKO/Y males by four days. In heterozygous Hcfc1hepKO/+ females, owing to random X-chromosome inactivation, upon Hcfc1hepKO allele induction, a 50/50 mix of HCF-1 positive and negative hepatocyte clusters is engineered. The livers with Hcfc1hepKO/Y hepatocytes displayed a 21-24-day terminal non-alcoholic fatty liver (NAFL) followed by non-alcoholic steatohepatitis (NASH) disease progression typical of severe NAFL disease (NAFLD). In contrast, in livers with heterozygous Hcfc1hepKO/+ hepatocytes, HCF-1-positive hepatocytes replaced HCF-1-negative hepatocytes and revealed only mild-NAFL development. Loss of HCF-1 led to loss of PGC1? protein, probably owing to its destabilization, and deregulation of gene expression particularly of genes involved in mitochondrial structure and function, likely explaining the severe Hcfc1 hepKO/Y liver pathology. Thus, HCF-1 is essential for hepatocyte function, likely playing both transcriptional and non-transcriptional roles. These genetically-engineered loss-of-HCF-1 mice can be used to study NASH as well as NAFLD resolution.
SUBMITTER: Minocha S
PROVIDER: S-EPMC6379584 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA