Project description:To investigate transmission of drug-resistant strains of Mycobacterium tuberculosis in Tunisia, we performed whole-genome sequencing on 46 multidrug-resistant strains isolated during 2012–2016. Core-genome multilocus sequence typing grouped 30 strains (65.2%) into 3 clusters, indicating extensive recent transmission and Haarlem clone predominance. Whole-genome sequencing might help public health services undertake appropriate control actions.
Project description:Peru has the highest burden of multidrug-resistant tuberculosis in the Americas region. Since 1999, the annual number of extensively drug-resistant tuberculosis (XDR-TB) Peruvian cases has been increasing, becoming a public health challenge. The objective of this study was to perform genomic characterization of Mycobacterium tuberculosis strains obtained from Peruvian patients with XDR-TB diagnosed from 2011 to 2015 in Peru. Whole genome sequencing (WGS) was performed on 68 XDR-TB strains from different regions of Peru. 58 (85.3%) strains came from the most populated districts of Lima and Callao. Concerning the lineages, 62 (91.2%) strains belonged to the Euro-American Lineage, while the remaining 6 (8.8%) strains belonged to the East-Asian Lineage. Most strains (90%) had high-confidence resistance mutations according to pre-established WHO-confident grading system. Discordant results between microbiological and molecular methodologies were caused by mutations outside the hotspot regions analysed by commercial molecular assays (rpoB I491F and inhA S94A). Cluster analysis using a cut-off ≤ 10 SNPs revealed that only 23 (34%) strains evidenced recent transmission links. This study highlights the relevance and utility of WGS as a high-resolution approach to predict drug resistance, analyse transmission of strains between groups, and determine evolutionary patterns of circulating XDR-TB strains in the country.
Project description:Drug-resistant tuberculosis (DR-TB) posed challenges to global TB control. Whole-genome sequencing (WGS) is recommended for predicting drug resistance to guide DR-TB treatment and management. Nevertheless, data are lacking in Taiwan. Phenotypic drug susceptibility testing (DST) of 12 anti-TB drugs was performed for 200 Mycobacterium tuberculosis isolates. WGS was performed using the Illumina platform. Drug resistance profiles and lineages were predicted in silico using the Total Genotyping Solution for TB (TGS-TB). Using the phenotypic DST results as a reference, WGS-based prediction demonstrated high concordance rates of isoniazid (95.0%), rifampicin (RIF) (98.0%), pyrazinamide (98.5%) and fluoroquinolones (FQs) (99.5%) and 96.0% to 99.5% for second-line injectable drugs (SLIDs); whereas, lower concordance rates of ethambutol (87.5%), streptomycin (88.0%) and ethionamide (84.0%). Furthermore, minimum inhibitory concentrations confirmed that RIF rpoB S450L, FQs gyrA D94G and SLIDs rrs a1401g conferred high resistance levels. Besides, we identified lineage-associated mutations in lineage 1 (rpoB H445Y and fabG1 c-15t) and predominant lineage 2 (rpoB S450L and rpsL K43R). The WGS-based prediction of drug resistance is highly concordant with phenotypic DST results and can provide comprehensive genetic information to guide DR-TB precision therapies in Taiwan.
Project description:The emergence of extensively drug-resistant tuberculosis (XDR-TB) presents a considerable challenge and a public health concern due to the high mortality rate of this disease. Whole-genome sequencing (WGS) of XDR-TB isolates is thus essential for understanding the mechanism of drug resistance. Here we report whole-genome sequences of two XDR-TB strains of two lineages from India.
Project description:Tuberculosis (TB) remains the deadliest Infectious disease worldwide, partially due to the increasing dissemination of multidrug and extensively drug-resistant (MDR/XDR) strains. Drug regimens containing the new anti-TB drugs bedaquiline (BDQ) and delamanid (DLM) appear as a last resort for the treatment of MDR or XDR-TB. Unfortunately, resistant cases to these drugs emerged just one year after their introduction in clinical practice. Early detection of resistant strains to BDQ and DLM is crucial to preserving the effectiveness of these drugs. Here, we present a systematic review aiming to define all available genotypic variants linked to different levels of resistance to BDQ and DLM that have been described through whole genomic sequencing (WGS) and the available drug susceptibility testing methods. During the review, we performed a thorough analysis of 18 articles. BDQ resistance was associated with genetic variants in Rv0678 and atpE, while mutations in pepQ were linked to a low-level of resistance for BDQ. For DLM, mutations in the genes ddn, fgd1, fbiA, and fbiC were found in phenotypically resistant cases, while all the mutations in fbiB were reported only in DLM-susceptible strains. Additionally, WGS analysis allowed the detection of heteroresistance to both drugs. In conclusion, we present a comprehensive panel of gene mutations linked to different levels of drug resistance to BDQ and DLM.
Project description:Mycobacterium tuberculosis is known to cause pulmonary and extrapulmonary tuberculosis. In Morocco, the spread of multidrug-resistant (MDR) tuberculosis (TB) has become a major challenge. Here, we announce the draft genome sequences of two Mycobacterium tuberculosis strains, MTB1 and MTB2, isolated from patients with pulmonary tuberculosis in Morocco, to describe variants associated with drug resistance.
Project description:Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.
Project description:Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis, the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro. Moreover, these mutations were associated with high fitness in vivo, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB.
Project description:Multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains represent a major threat for tuberculosis (TB) control. Treatment of MDR-TB patients is long and less effective, resulting in a significant number of treatment failures. The development of further resistances leads to extensively drug-resistant (XDR) variants. However, data on the individual reasons for treatment failure, e.g. an induced mutational burst, and on the evolution of bacteria in the patient are only sparsely available. To address this question, we investigated the intra-patient evolution of serial MTBC isolates obtained from three MDR-TB patients undergoing longitudinal treatment, finally leading to XDR-TB. Sequential isolates displayed identical IS6110 fingerprint patterns, suggesting the absence of exogenous re-infection. We utilized whole genome sequencing (WGS) to screen for variations in three isolates from Patient A and four isolates from Patient B and C, respectively. Acquired polymorphisms were subsequently validated in up to 15 serial isolates by Sanger sequencing. We determined eight (Patient A) and nine (Patient B) polymorphisms, which occurred in a stepwise manner during the course of the therapy and were linked to resistance or a potential compensatory mechanism. For both patients, our analysis revealed the long-term co-existence of clonal subpopulations that displayed different drug resistance allele combinations. Out of these, the most resistant clone was fixed in the population. In contrast, baseline and follow-up isolates of Patient C were distinguished each by eleven unique polymorphisms, indicating an exogenous re-infection with an XDR strain not detected by IS6110 RFLP typing. Our study demonstrates that intra-patient microevolution of MDR-MTBC strains under longitudinal treatment is more complex than previously anticipated. However, a mutator phenotype was not detected. The presence of different subpopulations might confound phenotypic and molecular drug resistance tests. Furthermore, high resolution WGS analysis is necessary to accurately detect exogenous re-infection as classical genotyping lacks discriminatory power in high incidence settings.
Project description:The genomes of 16 clinical Mycobacterium tuberculosis isolates were subjected to whole-genome sequencing to identify mutations related to resistance to one or more anti-Mycobacterium drugs. The sequence data will help in understanding the genomic characteristics of M. tuberculosis isolates and their resistance mutations prevalent in South India.