Ontology highlight
ABSTRACT: Background
Over the past several decades, the incidence of solid cancers has rapidly increased worldwide. Successful removal of tumor-initiating cells within tumors is essential in the field of cancer therapeutics to improve patient disease-free survival rates. The biocompatible multivarient-sized gold nanoparticles (MVS-GNPs) from quantum dots (QDs, <10 nm) to nanosized (up to 50 nm) particles have vast applications in various biomedical areas including cancer treatment. The role of MVS-GNPs for inhibition of tumorigenic potential and stemness of glioma was investigated in this study.Methods
Herein, MVS-GNPs synthesized and characterized by means of X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) techniques. Afterwards, interaction of these GNPs with glioma stem-cell like cells along with cancer cells were evaluated by MTT, cell motility, self-renewal assays and biostatistics was also applied.Results
Among these GNPs, G-QDs contributed to reduce metastatic events and spheroid cell growth, potentially blocking the self-renewal ability of these cells. This study also uncovers the previously unknown role of the inhibition of CTNNB1 signaling as a novel candidate to decrease the tumorigenesis of glioma spheroids and subsequent spheroid growth. The accurate and precise biostatistics results were obtained at quantify level.Conclusion
In summary, G-QDs may exhibit possible contribution on suppressing the growth of tumor-initiating cells. These data reveal a unique therapeutic approach for the elimination of residual resistant stem-like cells during cancer treatment.
SUBMITTER: Wahab R
PROVIDER: S-EPMC6391154 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
International journal of nanomedicine 20190213
<h4>Background</h4>Over the past several decades, the incidence of solid cancers has rapidly increased worldwide. Successful removal of tumor-initiating cells within tumors is essential in the field of cancer therapeutics to improve patient disease-free survival rates. The biocompatible multivarient-sized gold nanoparticles (MVS-GNPs) from quantum dots (QDs, <10 nm) to nanosized (up to 50 nm) particles have vast applications in various biomedical areas including cancer treatment. The role of MVS ...[more]