Unknown

Dataset Information

0

Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA.


ABSTRACT: Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to the identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7437G>A) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of three mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that four of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease. clinicaltrials.gov identifier:02869074.

SUBMITTER: Borras N 

PROVIDER: S-EPMC6395343 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unraveling the effect of silent, intronic and missense mutations on <i>VWF</i> splicing: contribution of next generation sequencing in the study of mRNA.

Borràs Nina N   Orriols Gerard G   Batlle Javier J   Pérez-Rodríguez Almudena A   Fidalgo Teresa T   Martinho Patricia P   López-Fernández María Fernanda MF   Rodríguez-Trillo Ángela Á   Lourés Esther E   Parra Rafael R   Altisent Carme C   Cid Ana Rosa AR   Bonanad Santiago S   Cabrera Noelia N   Moret Andrés A   Mingot-Castellano María Eva ME   Navarro Nira N   Pérez-Montes Rocío R   Marcellin Sally S   Moreto Ana A   Herrero Sonia S   Soto Inmaculada I   Fernández-Mosteirín Núria N   Jiménez-Yuste Víctor V   Alonso Nieves N   de Andrés-Jacob Aurora A   Fontanes Emilia E   Campos Rosa R   Paloma María José MJ   Bermejo Nuria N   Berrueco Ruben R   Mateo José J   Arribalzaga Karmele K   Marco Pascual P   Palomo Ángeles Á   Quismondo Nerea Castro NC   Iñigo Belén B   Nieto María Del Mar MDM   Vidal Rosa R   Martínez María Paz MP   Aguinaco Reyes R   Tenorio Jesús María JM   Ferreiro María M   García-Frade Javier J   Rodríguez-Huerta Ana María AM   Cuesta Jorge J   Rodríguez-González Ramón R   García-Candel Faustino F   Dobón Manuela M   Aguilar Carlos C   Vidal Francisco F   Corrales Irene I  

Haematologica 20181025 3


Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to the identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on <i>VWF</i> mRNA. This study aimed to elucidate the true effects of 18 mutations on <i>VWF</i> mRNA processing, investigate the contribution of next-generation sequencing to <i>in vivo</i> mRNA study in von Willebrand disease, and compare the findings with <i>  ...[more]

Similar Datasets

| S-EPMC3542457 | biostudies-literature
| S-EPMC9457326 | biostudies-literature
| S-SCDT-EMBOR-2020-52320-T | biostudies-other
| S-EPMC10653200 | biostudies-literature
| S-EPMC2945786 | biostudies-literature
| S-EPMC8188693 | biostudies-literature
2020-06-06 | GSE151854 | GEO
| S-EPMC3850688 | biostudies-literature
| S-EPMC8789036 | biostudies-literature
| S-EPMC9197511 | biostudies-literature