QTL for spike-layer uniformity and their influence on yield-related traits in wheat.
Ontology highlight
ABSTRACT: BACKGROUND:Common wheat (Triticum aestivum L.) is one of the most important food crops worldwide. Wheat spike-layer uniformity related traits (SLURTs) were complex traits that directly affect yield potential and appearance. In this study, quantitative trait locus (QTL) for five SLURTs among inter-tillers were first documented using a recombinant inbred line (RIL) mapping population derived from a cross between Kenong9204 and Jing411 (represented by KJ-RILs). Genetic relationships between SLURTs and yield were characterized in detail. RESULTS:The trait phenotypic performances for the 188 KJ-RILs and their parents were evaluated in eight different environments. The genetic data included in a high-density genetic map derived from the Affymetrix 660?K SNP Array and the corresponding genotypes in each lines. Of 99 putative additive QTL 11 were stable across environments and 57 showed significant additive-by-environment interaction effects. These QTL individually explained 1.05-39.62% of the phenotypic variance, with log of odds (LOD) values ranging from 2.00 to 34.01. Genetic relationships between SLURTs and yield indicated that plants with slight uneven spike spatial distribution should be an ideotype for super high-yield in wheat. CONCLUSIONS:The present study will provide assistance in understanding the genetic relationships between SLURTs and yield potential. The 11 stable QTL for SLURTs identified herein may facilitate breeding new wheat varieties with scientifically reasonable spike-layer distribution by marker assisted selection.
SUBMITTER: Zhao C
PROVIDER: S-EPMC6396499 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA