Project description:Carbon monoxide (CO) is an intrinsic signaling molecule with importance on par with that of nitric oxide. During the past decade, pharmacologic studies have amply demonstrated the therapeutic potential of carbon monoxide. However, such studies were mostly based on CO inhalation and metal-based CO-releasing molecules. The field is now at the stage that a major effort is needed to develop pharmaceutically acceptable forms of CO for delivery via various routes such as oral, injection, infusion, or topical applications. This review examines the state of the art, discusses the existing hurdles to overcome, and proposes developmental strategies necessary to address remaining drug delivery issues.
Project description:Currently, there are two safe and effective therapeutic strategies for chronic hepatitis B treatment, namely, nucleoside analogs and interferon alpha (pegylated or non-pegylated). These treatments can control viral replication and improve survival; however, they do not eliminate the virus and therefore require long-term continued therapy. In addition, there are significant concerns about virus rebound on discontinuation of therapy and the development of fibrosis and hepatocellular carcinoma despite therapy. Therefore, the search for new, more effective, and safer antiviral agents that can cure hepatitis B virus (HBV) continues. Anti-HBV drug discovery and development is fundamentally impacted by our current understanding of HBV replication, disease physiopathology, and persistence of HBV covalently closed circular DNA (cccDNA). Several HBV replication targets are the basis for novel anti-HBV drug development strategies. Many of them are already in clinical trial phase 1 or 2, while others with promising results are still in preclinical stages. As research intensifies, potential HBV curative therapies and modalities in the pipeline are now on the horizon.
Project description:Nanotechnology has been a burgeoning research field, which is finding compelling applications in several practical areas of everyday life. It has provided novel, paradigm shifting solutions to medical problems and particularly to cancer. In order to accelerate integration of nanotechnology into cancer research and oncology, the National Cancer Institute (NCI) of the National Institutes of Health (NIH) established the NCI Alliance for Nanotechnology in Cancer program in 2005. This effort brought together scientists representing physical sciences, chemistry, and engineering working at the nanoscale with biologists and clinicians working on cancer to form a uniquely multidisciplinary cancer nanotechnology research community. The last 14?years of the program have produced a remarkable body of scientific discovery and demonstrated its utility to the development of practical cancer interventions. This paper takes stock of how the Alliance program influenced melding of disparate research disciplines into the field of nanomedicine and cancer nanotechnology, has been highly productive in the scientific arena, and produced a mechanism of seamless transfer of novel technologies developed in academia to the clinical and commercial space. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Project description:As part of its diverse portfolio, the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) included two cluster-randomized trials evaluating interventions that could potentially lead to interruption of schistosomiasis transmission (elimination) in areas of Africa with low prevalence and intensity of infection. These studies, conducted in Zanzibar and Côte d'Ivoire, demonstrated that multiyear mass drug administration (MDA) with praziquantel failed to interrupt the transmission of urogenital schistosomiasis, even when provided biannually and/or supplemented by small-scale implementation of additional interventions. Other SCORE activities related to elimination included a feasibility and acceptability assessment of test-treat-track-test-treat (T5) strategies and mathematical modeling. Future evaluations of interventions to eliminate schistosomiasis should recognize the difficulties inherent in conducting randomized controlled trials on elimination and in measuring small changes where baseline prevalence is low. Highly sensitive and specific diagnostic tests for use in very low-prevalence areas for schistosomiasis are not routinely available, which complicates accurate measurement of infection rates and assessment of changes resulting from interventions in these settings. Although not encountered in these two studies, as prevalence and intensity decrease, political and community commitment to population-wide MDA may decrease. Because of this potential problem, SCORE developed and funded the T5 strategy implemented in Egypt, Kenya, and Tanzania. It is likely that focal MDA campaigns, along with more targeted approaches, including a T5 strategy and snail control, will need to be supplemented with the provision of clean water and sanitation and behavior change communications to achieve interruption of schistosome transmission.
Project description:Driven by complex and interconnected factors, including population growth, climate change, and geopolitics, infectious diseases represent one of the greatest healthcare challenges of the 21st century. Diagnostic technologies are the first line of defense in the fight against infectious disease, providing critical information to inform epidemiological models, track diseases, decide treatment choices, and ultimately prevent epidemics. The diagnosis of infectious disease at the genomic level using nucleic acid disease biomarkers has proven to be the most effective approach to date. Such methods rely heavily on enzymes to specifically amplify or detect nucleic acids in complex samples, and significant effort has been exerted to harness the power of enzymes for in vitro nucleic acid diagnostics. Unfortunately, significant challenges limit the potential of enzyme-assisted nucleic acid diagnostics, particularly when translating diagnostic technologies from the lab toward the point-of-use or point-of-care. Herein, we discuss the current state of the field and highlight cross-disciplinary efforts to solve the challenges associated with the successful deployment of this important class of diagnostics at or near the point-of-care.
Project description:Diagnostic tools appropriate for undertaking interventions to control helminth infections are key to their success. Many diagnostic tests for helminth infection have unsatisfactory performance characteristics and are not well suited for use in the parasite control programmes that are being increasingly implemented. Although the application of modern laboratory research techniques to improve diagnostics for helminth infection has resulted in some technical advances, uptake has not been uniform. Frequently, pilot or proof of concept studies of promising diagnostic technologies have not been followed by much needed product development, and in many settings diagnosis continues to rely on insensitive and unsatisfactory parasitological or serodiagnostic techniques. In contrast, PCR-based xenomonitoring of arthropod vectors, and use of parasite recombinant proteins as reagents for serodiagnostic tests, have resulted in critical advances in the control of specific helminth parasites. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, the diagnostic technologies relevant to control of helminth infections, either available or in development, are reviewed. Critical gaps are identified and opportunities to improve needed technologies are discussed.
Project description:RationaleThere is uncertainty regarding how to interpret discordance between tests for latent tuberculosis infection.ObjectivesThe objective of this study was to assess discordance between commercially available tests for latent tuberculosis in a low-prevalence population, including the impact of nontuberculous mycobacteria.MethodsThis was a cross-sectional comparison study among 2,017 military recruits at Fort Jackson, South Carolina, from April to June 2009. Several tests were performed simultaneously with a risk factor questionnaire, including (1) QuantiFERON-TB Gold In-Tube test, (2) T-SPOT.TB test, (3) tuberculin skin test, and (4) Battey skin test using purified protein derivative from the Battey bacillus.Measurements and main resultsIn this low-prevalence population, the specificities of the three commercially available diagnostic tests were not significantly different. Of the 88 subjects with a positive test, only 10 (11.4%) were positive to all three tests; 20 (22.7%) were positive to at least two tests. Bacille Calmette-Guérin vaccination, tuberculosis prevalence in country of birth, and Battey skin test reaction size were associated with tuberculin skin test-positive, IFN-γ release assay-negative test discordance. Increasing agreement between the three tests was associated with epidemiologic criteria indicating risk of infection and with quantitative test results.ConclusionsFor most positive results the three tests identified different people, suggesting that in low-prevalence populations most discordant results are caused by false-positives. False-positive tuberculin skin test reactions associated with reactivity to nontuberculous mycobacteria and bacille Calmette-Guérin vaccination may account for a proportion of test discordance observed.
Project description:BackgroundLack of a gold standard for latent TB infection has precluded direct measurement of test characteristics of the tuberculin skin test and interferon-γ release assays (QuantiFERON Gold In-Tube and T-SPOT.TB).ObjectiveWe estimated test sensitivity/specificity and latent TB infection prevalence in a prospective, US-based cohort of 10 740 participants at high risk for latent infection.MethodsBayesian latent class analysis was used to estimate test sensitivity/specificity and latent TB infection prevalence among subgroups based on age, foreign birth outside the USA and HIV infection.ResultsLatent TB infection prevalence varied from 4.0% among foreign-born, HIV-seronegative persons aged <5 years to 34.0% among foreign-born, HIV-seronegative persons aged ≥5 years. Test sensitivity ranged from 45.8% for the T-SPOT.TB among foreign-born, HIV-seropositive persons aged ≥5 years to 80.7% for the tuberculin skin test among foreign-born, HIV-seronegative persons aged ≥5 years. The skin test was less specific than either interferon-γ release assay, particularly among foreign-born populations (eg, the skin test had 70.0% specificity among foreign-born, HIV-seronegative persons aged ≥5 years vs 98.5% and 99.3% specificity for the QuantiFERON and T-SPOT.TB, respectively). The tuberculin skin test's positive predictive value ranged from 10.0% among foreign-born children aged <5 years to 69.2% among foreign-born, HIV-seropositive persons aged ≥5 years; the positive predictive values of the QuantiFERON (41.4%) and T-SPOT.TB (77.5%) were also low among US-born, HIV-seropositive persons aged ≥5 years.ConclusionsThese data reinforce guidelines preferring interferon-γ release assays for foreign-born populations and recommending against screening populations at low risk for latent TB infection.Trial registration numberNCT01622140.
Project description:BackgroundGenomic research on neurodevelopmental disorders (NDDs), particularly involving minors, combines and amplifies existing research ethics issues for biomedical research. We performed a review of the literature on the ethical issues associated with genomic research involving children affected by NDDs as an aid to researchers to better anticipate and address ethical concerns.ResultsQualitative thematic analysis of the included articles revealed themes in three main areas: research design and ethics review, inclusion of research participants, and communication of research results. Ethical issues known to be associated with genomic research in general, such as privacy risks and informed consent/assent, seem especially pressing for NDD participants because of their potentially decreased cognitive abilities, increased vulnerability, and stigma associated with mental health problems. Additionally, there are informational risks: learning genetic information about NDD may have psychological and social impact, not only for the research participant but also for family members. However, there are potential benefits associated with research participation, too: by enrolling in research, the participants may access genetic testing and thus increase their chances of receiving a (genetic) diagnosis for their neurodevelopmental symptoms, prognostic or predictive information about disease progression or the risk of concurrent future disorders. Based on the results of our review, we developed an ethics checklist for genomic research involving children affected by NDDs.ConclusionsIn setting up and designing genomic research efforts in NDD, researchers should partner with communities of persons with NDDs. Particular attention should be paid to preventing disproportional burdens of research participation of children with NDDs and their siblings, parents and other family members. Researchers should carefully tailor the information and informed consent procedures to avoid therapeutic and diagnostic misconception in NDD research. To better anticipate and address ethical issues in specific NDD studies, we suggest researchers to use the ethics checklist for genomic research involving children affected by NDDs presented in this paper.
Project description:Special populations, including children and pregnant women, have been neglected in tuberculosis drug development. Patients in developing countries are inadequately represented in pharmacology research, and postmarketing pharmacovigilance activities tend to be rudimentary in these settings. There is an ethical imperative to generate evidence at an early stage to support optimal treatment in these populations and in populations with common comorbid conditions, such as diabetes and human immunodeficiency virus (HIV) infection. This article highlights the research needed to support equitable access to new antituberculosis regimens. Efficient and opportunistic pharmacokinetic study designs, typically using sparse sampling and population analysis methods, can facilitate optimal dose selection for children and pregnant women. Formulations suitable for children should be developed early and used in pharmacokinetic studies to guide dose selection. Drug-drug interactions between commonly coprescribed medications also need to be evaluated, and when these are significant, alternative approaches should be sought. A potent rifamycin-sparing regimen could revolutionize the treatment of adults and children requiring a protease inhibitor as part of antiretroviral treatment regimens for HIV infection. A sufficiently wide formulary of drugs should be developed for those with contraindications to the standard approaches. Because genetic variations may influence an individual's response to tuberculosis treatment, depending on the population being treated, it is important that samples be collected and stored for pharmacogenetic study in future clinical trials.