Unknown

Dataset Information

0

Endoplasmic Reticulum Stress Contributes to Mitochondrial Exhaustion of CD8+ T Cells.


ABSTRACT: Tumor antigen-specific T cells rapidly lose energy and effector function in tumors. The cellular mechanisms by which energy loss and inhibition of effector function occur in tumor-infiltrating lymphocytes (TILs) are ill-defined, and methods to identify tumor antigen-specific TILs that experience such stress are unknown. Processes upstream of the mitochondria guide cell-intrinsic energy depletion. We hypothesized that a mechanism of T-cell-intrinsic energy consumption was the process of oxidative protein folding and disulfide bond formation that takes place in the endoplasmic reticulum (ER) guided by protein kinase R-like endoplasmic reticulum kinase (PERK) and downstream PERK axis target ER oxidoreductase 1 (ERO1?). To test this hypothesis, we created TCR transgenic mice with a T-cell-specific PERK gene deletion (OT1 + Lckcre+ PERK f/f , PERK KO). We found that PERK KO and T cells that were pharmacologically inhibited by PERK or ERO1? maintained reserve energy and exhibited a protein profile consistent with reduced oxidative stress. These T-cell groups displayed superior tumor control compared with T effectors. We identified a biomarker of ER-induced mitochondrial exhaustion in T cells as mitochondrial reactive oxygen species (mtROS), and found that PD-1+ tumor antigen-specific CD8+ TILs express mtROS. In vivo treatment with a PERK inhibitor abrogated mtROS in PD-1+ CD8+ TILs and bolstered CD8+ TIL viability. Combination therapy enabled 100% survival and 71% tumor clearance in a sarcoma mouse model. Our data identify the ER as a regulator of T-cell energetics and indicate that ER elements are effective targets to improve cancer immunotherapy.

SUBMITTER: Hurst KE 

PROVIDER: S-EPMC6397687 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Endoplasmic Reticulum Stress Contributes to Mitochondrial Exhaustion of CD8<sup>+</sup> T Cells.

Hurst Katie E KE   Lawrence Kiley A KA   Essman Matthew T MT   Walton Zeke J ZJ   Leddy Lee R LR   Thaxton Jessica E JE  

Cancer immunology research 20190118 3


Tumor antigen-specific T cells rapidly lose energy and effector function in tumors. The cellular mechanisms by which energy loss and inhibition of effector function occur in tumor-infiltrating lymphocytes (TILs) are ill-defined, and methods to identify tumor antigen-specific TILs that experience such stress are unknown. Processes upstream of the mitochondria guide cell-intrinsic energy depletion. We hypothesized that a mechanism of T-cell-intrinsic energy consumption was the process of oxidative  ...[more]

Similar Datasets

| S-EPMC2776092 | biostudies-literature
| S-EPMC6331260 | biostudies-literature
| S-EPMC3862672 | biostudies-literature
| S-EPMC8238934 | biostudies-literature
| S-EPMC6370866 | biostudies-literature
| S-EPMC6374379 | biostudies-literature
| S-EPMC3877569 | biostudies-literature
| S-EPMC7466046 | biostudies-literature
| S-EPMC6974519 | biostudies-literature
| S-EPMC4076561 | biostudies-literature