Unknown

Dataset Information

0

Identification of the Human Skeletal Stem Cell.


ABSTRACT: Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.

SUBMITTER: Chan CKF 

PROVIDER: S-EPMC6400492 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of the Human Skeletal Stem Cell.

Chan Charles K F CKF   Gulati Gunsagar S GS   Sinha Rahul R   Tompkins Justin Vincent JV   Lopez Michael M   Carter Ava C AC   Ransom Ryan C RC   Reinisch Andreas A   Wearda Taylor T   Murphy Matthew M   Brewer Rachel E RE   Koepke Lauren S LS   Marecic Owen O   Manjunath Anoop A   Seo Eun Young EY   Leavitt Tripp T   Lu Wan-Jin WJ   Nguyen Allison A   Conley Stephanie D SD   Salhotra Ankit A   Ambrosi Thomas H TH   Borrelli Mimi R MR   Siebel Taylor T   Chan Karen K   Schallmoser Katharina K   Seita Jun J   Sahoo Debashis D   Goodnough Henry H   Bishop Julius J   Gardner Michael M   Majeti Ravindra R   Wan Derrick C DC   Goodman Stuart S   Weissman Irving L IL   Chang Howard Y HY   Longaker Michael T MT  

Cell 20180901 1


Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individ  ...[more]

Similar Datasets

| S-EPMC4297645 | biostudies-literature
| S-EPMC10889359 | biostudies-literature
| S-EPMC10495180 | biostudies-literature
| S-EPMC8249634 | biostudies-literature
| S-EPMC7370785 | biostudies-literature
| S-EPMC4996435 | biostudies-literature
| S-EPMC4439375 | biostudies-literature
| S-EPMC6249887 | biostudies-other
| PRJNA679960 | ENA
| S-EPMC6105281 | biostudies-literature