Unknown

Dataset Information

0

Optimization and Validation of Efficient Models for Predicting Polythiophene Self-Assembly.


ABSTRACT: We develop an optimized force-field for poly(3-hexylthiophene) (P3HT) and demonstrate its utility for predicting thermodynamic self-assembly. In particular, we consider short oligomer chains, model electrostatics and solvent implicitly, and coarsely model solvent evaporation. We quantify the performance of our model to determine what the optimal system sizes are for exploring self-assembly at combinations of state variables. We perform molecular dynamics simulations to predict the self-assembly of P3HT at ?350 combinations of temperature and solvent quality. Our structural calculations predict that the highest degrees of order are obtained with good solvents just below the melting temperature. We find our model produces the most accurate structural predictions to date, as measured by agreement with grazing incident X-ray scattering experiments.

SUBMITTER: Miller ED 

PROVIDER: S-EPMC6401914 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optimization and Validation of Efficient Models for Predicting Polythiophene Self-Assembly.

Miller Evan D ED   Jones Matthew L ML   Henry Michael M MM   Chery Paul P   Miller Kyle K   Jankowski Eric E  

Polymers 20181126 12


We develop an optimized force-field for poly(3-hexylthiophene) (P3HT) and demonstrate its utility for predicting thermodynamic self-assembly. In particular, we consider short oligomer chains, model electrostatics and solvent implicitly, and coarsely model solvent evaporation. We quantify the performance of our model to determine what the optimal system sizes are for exploring self-assembly at combinations of state variables. We perform molecular dynamics simulations to predict the self-assembly  ...[more]

Similar Datasets

| S-EPMC5994016 | biostudies-literature
| S-EPMC4944489 | biostudies-other
| S-EPMC7927620 | biostudies-literature
| S-EPMC6222596 | biostudies-literature
| S-EPMC3808594 | biostudies-literature
| S-EPMC6289139 | biostudies-literature
| S-EPMC4048447 | biostudies-other
| S-EPMC8921267 | biostudies-literature
| S-EPMC10996019 | biostudies-literature
| S-EPMC6794641 | biostudies-literature