Raman-assisted broadband mode-locked laser.
Ontology highlight
ABSTRACT: The pulse duration that is available from femtosecond mode-locked lasers is limited by the emission bandwidth of the laser crystals used. Considerable efforts have been made to broaden the emission gain bandwidth in these lasers over the past five decades. To break through this limitation, intracavity spectral broadening is required. Here, we propose a new spectral broadening method inside the mode-locked cavity based on use of stimulated Raman scattering and demonstrate significant pulse shortening using this method. We configured Kerr-lens mode-locked lasers based on Yb:CaGdAlO4, Yb:KY(WO4)2 and Yb:Y2O3 materials and achieved significant spectral broadening that exceeds the emission bandwidth. The spectral broadening in the Yb:CaGdAlO4 oscillator shortens the pulse duration to 22?fs, which is a one-third of the duration of our unbroadened mode-locked pulse. The results presented here indicate that Raman-assisted spectral broadening can break the limitations of the emission gain bandwidth and shorten the duration of pulses from femtosecond mode-locked lasers.
SUBMITTER: Kimura S
PROVIDER: S-EPMC6403213 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA