Unknown

Dataset Information

0

Silver nanowires with optimized silica coating as versatile plasmonic resonators.


ABSTRACT: Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70?nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stöber method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems.

SUBMITTER: Rothe M 

PROVIDER: S-EPMC6405757 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Silver nanowires with optimized silica coating as versatile plasmonic resonators.

Rothe Martin M   Zhao Yuhang Y   Kewes Günter G   Kochovski Zdravko Z   Sigle Wilfried W   van Aken Peter A PA   Koch Christoph C   Ballauff Matthias M   Lu Yan Y   Benson Oliver O  

Scientific reports 20190307 1


Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active  ...[more]

Similar Datasets

| S-EPMC6195569 | biostudies-literature
| S-EPMC7428238 | biostudies-literature
| S-EPMC4766418 | biostudies-literature
| S-EPMC4869000 | biostudies-literature
| S-EPMC6471565 | biostudies-literature
| S-EPMC7878765 | biostudies-literature
| S-EPMC4864996 | biostudies-literature
| S-EPMC6449381 | biostudies-literature
| S-EPMC9079824 | biostudies-literature
| S-EPMC6677546 | biostudies-literature