Phosphorylation-Dependent Intra-Domain Interaction of the Cx37 Carboxyl-Terminus Controls Cell Survival.
Ontology highlight
ABSTRACT: Differential phosphorylation of the carboxyl-terminus of connexin 37 (Cx37-CT) regulates phenotypic switching between cell growth phenotypes (cell death, cell cycle arrest, proliferation). The specific phosphorylation events in the Cx37-CT that are necessary for these growth regulatory effects are currently unknown. Through the combined use of deletion and site specific (de)phospho-mimetic Cx37-CT mutants, our data suggest a phosphorylation-dependent interaction between the mid-tail (aa 273?317) and end-tail (aa 318?333) portions of the Cx37-CT that regulates cell survival. As detected by mass spectrometry, Cx37 was phosphorylated at serines 275, 321, and 328; phosphomimetic mutations of these sites resulted in cell death when expressed in rat insulinoma cells. Alanine substitution at S328, but not at S275 or S321, also triggered cell death. Cx37-S275D uniquely induced the death of only low density, non-contact forming cells, but neither hemichannel open probability nor channel conductance distinguished death-inducing mutants. As channel function is necessary for cell death, together the data suggest that the phosphorylation state of the Cx37-CT controls an intra-domain interaction within the CT that modifies channel function and induces cell death.
SUBMITTER: Jacobsen NL
PROVIDER: S-EPMC6406260 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA