Unknown

Dataset Information

0

Functionalized Anion-Exchange Membranes Facilitate Electrodialysis of Citrate and Phosphate from Model Dairy Wastewater.


ABSTRACT: In this study, the preparation of a new, functional anion-exchange membrane (AEM), containing guanidinium groups as the anion-exchanging sites (Gu-100), is described as well as the membrane characterization by XPS, water uptake, permselectivities, and electrical resistances. The functional membrane was also employed in pH-dependent electrodialysis experiments using model dairy wastewater streams. The properties of the new membrane are compared to those of a commercially available anion-exchange membrane bearing conventional quaternary ammonium groups (Gu-0). Guanidinium was chosen for its specific binding properties toward oxyanions: e.g., phosphate. This functional moiety was covalently coupled to an acrylate monomer via a facile two-step synthesis to yield bulk-modified membranes upon polymerization. Significant differences were observed in the electrodialysis experiments for Gu-0 and Gu-100 at pH 7, showing an enhanced phosphate and citrate transport for Gu-100 in comparison to Gu-0. At pH 10 the difference is much more pronounced: for Gu-0 membranes almost no phosphate and citrate transport could be detected, while the Gu-100 membranes transported both ions significantly. We conclude that having guanidinium groups as anion-exchange sites improves the selectivity of AEMs. As the presented monomer synthesis strategy is modular, we consider the implementation of functional groups into a polymer-based membrane via the synthesis of tailor-made monomers as an important step toward selective ion transport, which is relevant for various fields, including water treatment processes and fuel cells.

SUBMITTER: Paltrinieri L 

PROVIDER: S-EPMC6407041 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functionalized Anion-Exchange Membranes Facilitate Electrodialysis of Citrate and Phosphate from Model Dairy Wastewater.

Paltrinieri Laura L   Huerta Elisa E   Puts Theo T   van Baak Willem W   Verver Albert B AB   Sudhölter Ernst J R EJR   de Smet Louis C P M LCPM  

Environmental science & technology 20181221 5


In this study, the preparation of a new, functional anion-exchange membrane (AEM), containing guanidinium groups as the anion-exchanging sites (Gu-100), is described as well as the membrane characterization by XPS, water uptake, permselectivities, and electrical resistances. The functional membrane was also employed in pH-dependent electrodialysis experiments using model dairy wastewater streams. The properties of the new membrane are compared to those of a commercially available anion-exchange  ...[more]

Similar Datasets

| S-EPMC9316569 | biostudies-literature
| S-EPMC5503003 | biostudies-other
| S-EPMC6644081 | biostudies-literature
| S-EPMC8179501 | biostudies-literature
| S-EPMC10386577 | biostudies-literature
| S-EPMC9412259 | biostudies-literature
| S-EPMC7482228 | biostudies-literature
| S-EPMC7143834 | biostudies-literature
| S-EPMC9850910 | biostudies-literature
| S-EPMC8953537 | biostudies-literature