ABSTRACT: BACKGROUND:Neural tube defects (NTDs) are birth defects of the brain, spine, or spinal cord invoked by the insufficient intake of folic acid in the early stages of pregnancy and have a complex etiology involving both genetic and environmental factors. So the study aimed to explore the association between alterations in maternal one-carbon metabolism and NTDs in the offspring. METHODS:We conducted a case-control study to get a deeper insight into this association, as well as into the role of genetic polymorphisms. Plasma concentrations of folate, homocysteine (Hcy), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and genotypes and alleles distributions of 52 SNPs in 8 genes were compared for 61 women with NTDs-affected offspring and 61 women with healthy ones. RESULTS:There were significant differences between groups with regard to plasma folate, SAM, SAH and SAM/SAH levels. Logistic regression results revealed a significant association between maternal plasma folate level and risk of NTDs in the offspring. For MTHFD1 rs2236225 polymorphism, mothers having GA genotype and A allele exhibited an increased risk of NTDs in the offspring (OR?=?2.600, 95%CI: 1.227-5.529; OR?=?1.847, 95%CI: 1.047-3.259). For MTHFR rs1801133 polymorphism, mothers having TT and CT genotypes were more likely to affect NTDs in the offspring (OR?=?4.105, 95%CI: 1.271-13.258; OR?=?3.333, 95%CI: 1.068-10.400). Moreover, mothers carrying T allele had a higher risk of NTDs in the offspring (OR?=?1.798, 95%CI: 1.070-3.021). For MTRR rs1801394 polymorphism, the frequency of G allele was significantly higher in cases than in controls (OR?=?1.763, 95%CI: 1.023-3.036). Mothers with NTDs-affected children had higher AG genotype in RFC1 rs1051226 polymorphism than controls, manifesting an increased risk for NTDs (OR?=?3.923, 95%CI: 1.361-11.308). CONCLUSION:Folic acid deficiency, MTHFD1 rs2236225, MTHFR rs1801133, MTRR rs1801349 and RFC1 rs1051226 polymorphisms may be maternal risk factors of NTDs.