Unknown

Dataset Information

0

Dynamic viability of the 2016 Mw 7.8 Kaikoura earthquake cascade on weak crustal faults.


ABSTRACT: We present a dynamic rupture model of the 2016 Mw 7.8 Kaik?ura earthquake to unravel the event's riddles in a physics-based manner and provide insight on the mechanical viability of competing hypotheses proposed to explain them. Our model reproduces key characteristics of the event and constraints puzzling features inferred from high-quality observations including a large gap separating surface rupture traces, the possibility of significant slip on the subduction interface, the non-rupture of the Hope fault, and slow apparent rupture speed. We show that the observed rupture cascade is dynamically consistent with regional stress estimates and a crustal fault network geometry inferred from seismic and geodetic data. We propose that the complex fault system operates at low apparent friction thanks to the combined effects of overpressurized fluids, low dynamic friction and stress concentrations induced by deep fault creep.

SUBMITTER: Ulrich T 

PROVIDER: S-EPMC6418120 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults.

Ulrich Thomas T   Gabriel Alice-Agnes AA   Ampuero Jean-Paul JP   Xu Wenbin W  

Nature communications 20190314 1


We present a dynamic rupture model of the 2016 M<sub>w</sub> 7.8 Kaikōura earthquake to unravel the event's riddles in a physics-based manner and provide insight on the mechanical viability of competing hypotheses proposed to explain them. Our model reproduces key characteristics of the event and constraints puzzling features inferred from high-quality observations including a large gap separating surface rupture traces, the possibility of significant slip on the subduction interface, the non-ru  ...[more]

Similar Datasets

| S-EPMC10587168 | biostudies-literature
| S-EPMC4320219 | biostudies-literature
| S-EPMC5496879 | biostudies-literature
| S-EPMC9286591 | biostudies-literature
| S-EPMC6416261 | biostudies-literature
| S-EPMC4842989 | biostudies-literature
| S-EPMC6890680 | biostudies-literature
| S-EPMC6472498 | biostudies-literature
| S-EPMC5693966 | biostudies-literature
| S-EPMC4639723 | biostudies-literature