Unknown

Dataset Information

0

Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction.


ABSTRACT: BACKGROUND:microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and they play an important role in various biological processes in the human body. Therefore, identifying their regulation mechanisms is essential for the diagnostics and therapeutics for a wide range of diseases. There have been a large number of researches which use gene expression profiles to resolve this problem. However, the current methods have their own limitations. Some of them only identify the correlation of miRNA and mRNA expression levels instead of the causal or regulatory relationships while others infer the causality but with a high computational complexity. To overcome these issues, in this study, we propose a method to identify miRNA-mRNA regulatory relationships in breast cancer using the invariant causal prediction. The key idea of invariant causal prediction is that the cause miRNAs of their target mRNAs are the ones which have persistent causal relationships with the target mRNAs across different environments. RESULTS:In this research, we aim to find miRNA targets which are consistent across different breast cancer subtypes. Thus, first of all, we apply the Pam50 method to categorize BRCA samples into different "environment" groups based on different cancer subtypes. Then we use the invariant causal prediction method to find miRNA-mRNA regulatory relationships across subtypes. We validate the results with the miRNA-transfected experimental data and the results show that our method outperforms the state-of-the-art methods. In addition, we also integrate this new method with the Pearson correlation analysis method and Lasso in an ensemble method to take the advantages of these methods. We then validate the results of the ensemble method with the experimentally confirmed data and the ensemble method shows the best performance, even comparing to the proposed causal method. CONCLUSIONS:This research found miRNA targets which are consistent across different breast cancer subtypes. Further functional enrichment analysis shows that miRNAs involved in the regulatory relationships predicated by the proposed methods tend to synergistically regulate target genes, indicating the usefulness of these methods, and the identified miRNA targets could be used in the design of wet-lab experiments to discover the causes of breast cancer.

SUBMITTER: Pham VV 

PROVIDER: S-EPMC6419852 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction.

Pham Vu Vh VV   Zhang Junpeng J   Liu Lin L   Truong Buu B   Xu Taosheng T   Nguyen Trung T TT   Li Jiuyong J   Le Thuc D TD  

BMC bioinformatics 20190315 1


<h4>Background</h4>microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and they play an important role in various biological processes in the human body. Therefore, identifying their regulation mechanisms is essential for the diagnostics and therapeutics for a wide range of diseases. There have been a large number of researches which use gene expression profiles to resolve this problem. However, the current methods have their own limitations. Some of them only identify  ...[more]

Similar Datasets

| S-EPMC4414601 | biostudies-literature
| S-EPMC8570857 | biostudies-literature
| S-EPMC4818025 | biostudies-literature
| S-EPMC7657683 | biostudies-literature
| S-EPMC2995118 | biostudies-literature
| S-EPMC10453290 | biostudies-literature
| S-EPMC4534763 | biostudies-other
| S-EPMC4696828 | biostudies-literature
| S-EPMC6353269 | biostudies-literature
| S-EPMC6858813 | biostudies-literature