Project description:BACKGROUND: Studies of toxicity and unintended side effects can lead to improved drug safety and efficacy. One promising form of study comes from molecular systems biology in the form of "systems pharmacology". Systems pharmacology combines data from clinical observation and molecular biology. This approach is new, however, and there are few examples of how it can practically predict adverse reactions (ADRs) from an experimental drug with acceptable accuracy. RESULTS: We have developed a new and practical computational framework to accurately predict ADRs of trial drugs. We combine clinical observation data with drug target data, protein-protein interaction (PPI) networks, and gene ontology (GO) annotations. We use cardiotoxicity, one of the major causes for drug withdrawals, as a case study to demonstrate the power of the framework. Our results show that an in silico model built on this framework can achieve a satisfactory cardiotoxicity ADR prediction performance (median AUC = 0.771, Accuracy = 0.675, Sensitivity = 0.632, and Specificity = 0.789). Our results also demonstrate the significance of incorporating prior knowledge, including gene networks and gene annotations, to improve future ADR assessments. CONCLUSIONS: Biomolecular network and gene annotation information can significantly improve the predictive accuracy of ADR of drugs under development. The use of PPI networks can increase prediction specificity and the use of GO annotations can increase prediction sensitivity. Using cardiotoxicity as an example, we are able to further identify cardiotoxicity-related proteins among drug target expanding PPI networks. The systems pharmacology approach that we developed in this study can be generally applicable to all future developmental drug ADR assessments and predictions.
Project description:Dexamethasone (Dex) is a synthetic glucocorticoid that has anti-inflammatory and immunosuppressant effects and is used in several conditions such as asthma and severe allergy. Patients receiving Dex, either at a high dose or for a long time, might develop several side effects such as hyperglycemia, weight change, or osteoporosis due to its in vivo non-selectivity. Herein, we used liquid chromatography-tandem mass spectrometry-based comprehensive targeted metabolomic profiling as well as radiographic imaging techniques to study the side effects of Dex treatment in rats. The Dex-treated rats suffered from a ∼20% reduction in weight gain, hyperglycemia (145 mg/dL), changes in serum lipids, and reduction in total serum alkaline phosphatase (ALP) (∼600 IU/L). Also, compared to controls, Dex-treated rats showed a distinctive metabolomics profile. In particular, serum amino acids metabolism showed six-fold reduction in phenylalanine, lysine, and arginine levels and upregulation of tyrosine and hydroxyproline reflecting perturbations in gluconeogenesis and protein catabolism which together lead to weight loss and abnormal bone metabolism. Sorbitol level was markedly elevated secondary to hyperglycemia and reflecting activation of the polyol metabolism pathway causing a decrease in the availability of reducing molecules (glutathione, NADPH, NAD+). Overexpression of succinylacetone (4,6-dioxoheptanoic acid) suggests a novel inhibitory effect of Dex on hepatic fumarylacetoacetate hydrolase. The acylcarnitines, mainly the very long chain species (C12, C14:1, C18:1) were significantly increased after Dex treatment which reflects degradation of the adipose tissue. In conclusion, long-term Dex therapy in rats is associated with a distinctive metabolic profile which correlates with its side effects. Therefore, metabolomics based profiling may predict Dex treatment-related side effects and may offer possible novel therapeutic interventions.
Project description:BACKGROUND:Excessive or prolonged usage of dexamethasone can cause serious side effects, but few studies reveal the related mechanism. Dexamethasone work differently in blood tumors and solid tumors, and the cause is still obscure. The aims of this study was to identify potential biomarkers associated with the side effects of dexamethasone in different tumors. METHODS:Gene Expression Omnibus database (GEO) datasets of blood tumors and solid tumors were retrieval to selected microarray data. The differentially expressed genes (DEGs) were identified. Gene ontology (GO) and pathway enrichment analyses, and protein-protein interaction (PPI) network analysis were performed. RESULTS:One hundred and eighty dexamethasone-specific DEGs (92 up and 88 downregulated) were obtained in lymphoma cell samples (named as DEGs-lymph), including APOD, TP53INP1, CLIC3, SERPINA9, and C3orf52. One hundred and four specific DEGs (100 up and 4 downregulated) were identified in prostate cancer cell samples (named as DEGs-prostate), including COL6A2, OSBPL5, OLAH, OGFRL1, and SLC39A14. The significantly enriched GO terms of DEGs-lymph contained cellular amino acid metabolic process and cell cycle. The most significantly enriched pathway of DEGs-lymph was cytosolic tRNA aminoacylation. The DEGs-prostate was enriched in 39 GO terms and two pathways, and the pathways were PPARA activates gene expression Homo sapiens, and insulin resistance. The PPI network of DEGs-lymph gathered into two major clusters, WARS1 and CDC25A were representatives for them, respectively. One cluster was mainly involved in cytosolic tRNA aminoacylation, aminoacyl-tRNA biosynthesis and the function of amino acid metabolism; another was associated with cell cycle and cell apoptosis. As for the PPI network of DEGs-prostate, HELZ2 was the top nodes involved in the most protein-protein pairs, which was related to the pathway of "PPARA activates gene expression Homo sapiens." CONCLUSIONS:WARS1 and CDC25A might be potential biomarkers for side effects of dexamethasone in lymphoma, and HELZ2 in prostate cancer.
Project description:Postoperative new-onset atrial fibrillation (PNAF) is very common after cardiac surgery and postoperative inflammation may contribute to PNAF by inducing atrial dysfunction. Corticosteroids reduce inflammation and may thus reduce atrial dysfunction and PNAF development. This study aimed to determine whether dexamethasone protects against left atrial dysfunction and PNAF in cardiac surgical patients. Cardiac surgical patients were randomised to a single dose of dexamethasone (1 mg.kg(-1)) or placebo after inducing anaesthesia. Transoesophageal echocardiography was performed in patients before and after surgery. Primary outcome was left atrial total ejection fraction (LA-TEF) after sternal closure; secondary outcomes included left atrial diameter and PNAF. 62 patients were included. Baseline characteristics were well balanced. Postoperative LA-TEF was 36.4 % in the dexamethasone group and 40.2 % in the placebo group (difference -3.8 %; 95 % confidence interval (CI) -9.0 to 1.4 %; P = 0.15). Postoperative left atrial diameter was 4.6 and 4.3 cm, respectively (difference 0.3; 95 % CI -0.2 to 0.7; P = 0.19). The incidence of PNAF was 30 % in the dexamethasone group and 39 % in the placebo group (P = 0.47). Intraoperative high-dose dexamethasone did not protect against postoperative left atrial dysfunction and did not reduce the risk of PNAF in cardiac surgical patients.
Project description:Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward in several centers in Greece and the Netherlands and whole blood transcriptomic analysis was performed before and after starting dexamethasone treatment. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and their transcriptome was assessed.
Project description:Glucocorticoids are indispensable anti-inflammatory and decongestant drugs with high prevalence of use at (~)0.9% of the adult population. Better holistic insights into glucocorticoid-induced changes are crucial for effective use as concurrent medication and management of adverse effects. The profiles of 214 metabolites from plasma of 20 male healthy volunteers were recorded prior to and after ingestion of a single dose of 4?mg dexamethasone (+20?mg pantoprazole). Samples were drawn at three predefined time points per day: seven untreated (day 1 midday - day 3 midday) and four treated (day 3 evening - day 4 evening) per volunteer. Statistical analysis revealed tremendous impact of dexamethasone on the metabolome with 150 of 214 metabolites being significantly deregulated on at least one time point after treatment (ANOVA, Benjamini-Hochberg corrected, q?<?0.05). Inter-person variability was high and remained uninfluenced by treatment. The clearly visible circadian rhythm prior to treatment was almost completely suppressed and deregulated by dexamethasone. The results draw a holistic picture of the severe metabolic deregulation induced by single-dose, short-term glucocorticoid application. The observed metabolic changes suggest a potential for early detection of severe side effects, raising hope for personalized early countermeasures increasing quality of life and reducing health care costs.
Project description:BackgroundThe analgesic efficacy and adverse effects of a single perioperative dose of dexamethasone are unclear. We performed a systematic review to evaluate the impact of a single i.v. dose of dexamethasone on postoperative pain and explore adverse events associated with this treatment.MethodsMEDLINE, EMBASE, CINAHL, and the Cochrane Register were searched for randomized, controlled studies that compared dexamethasone vs placebo or an antiemetic in adult patients undergoing general anaesthesia and reported pain outcomes.ResultsForty-five studies involving 5796 patients receiving dexamethasone 1.25-20 mg were included. Patients receiving dexamethasone had lower pain scores at 2 h {mean difference (MD) -0.49 [95% confidence interval (CI): -0.83, -0.15]} and 24 h [MD -0.48 (95% CI: -0.62, -0.35)] after surgery. Dexamethasone-treated patients used less opioids at 2 h [MD -0.87 mg morphine equivalents (95% CI: -1.40 to -0.33)] and 24 h [MD -2.33 mg morphine equivalents (95% CI: -4.39, -0.26)], required less rescue analgesia for intolerable pain [relative risk 0.80 (95% CI: 0.69, 0.93)], had longer time to first dose of analgesic [MD 12.06 min (95% CI: 0.80, 23.32)], and shorter stays in the post-anaesthesia care unit [MD -5.32 min (95% CI: -10.49 to -0.15)]. There was no dose-response with regard to the opioid-sparing effect. There was no increase in infection or delayed wound healing with dexamethasone, but blood glucose levels were higher at 24 h [MD 0.39 mmol litre(-1) (95% CI: 0.04, 0.74)].ConclusionsA single i.v. perioperative dose of dexamethasone had small but statistically significant analgesic benefits.
Project description:Radiotherapy is used as definitive treatment in approximately two-thirds of all cancers. However, like any treatment, radiation has significant acute and long-term side effects including secondary malignancies. Even when similar radiation parameters are used, 5%-10% of patients will experience adverse radiation side effects. Genomic susceptibility is thought to be responsible for approximately 40% of the clinical variability observed. In the era of precision medicine, the link between genetic susceptibility and radiation-induced side effects is further strengthening. Genome-wide association studies (GWAS) have begun to identify single-nucleotide polymorphisms (SNPs) attributed to overall and tissue-specific toxicity following radiation for treatment of breast cancer, prostate cancer, and other cancers. Here, we review the use of GWAS in identifying polymorphisms that are predictive of acute and long-term radiation-induced side effects with a focus on chest, pelvic, and head-and-neck irradiation. Integration of GWAS studies with "omic" data, patient characteristics, and clinical correlates into predictive models could decrease radiation-induced side effects while increasing therapeutic efficacy.