Project description:This is the protocol for a review and there is no abstract. The objectives are as follows: To compare the effectiveness and harmful effects of interventions, which target the epidermal growth factor receptor, in the treatment of ovarian cancer.
Project description:Ovarian cancer is the second most lethal gynecological cancer worldwide and while most patients respond to initial therapy, they often relapse with resistant disease. Human epidermal growth factor receptors (especially HER1/EGFR and HER2/ERBB2) are involved in disease progression; hence, strategies to inhibit their action could prove advantageous in ovarian cancer patients, especially in patients resistant to first line therapy. Monoclonal antibodies and tyrosine kinase inhibitors are two classes of drugs that act on these receptors. They have demonstrated valuable antitumor activity in multiple cancers and their possible use in ovarian cancer continues to be studied. In this review, we discuss the human epidermal growth factor receptor family; review emerging clinical studies on monoclonal antibodies and tyrosine kinase inhibitors targeting these receptors in ovarian cancer patients; and propose future research possibilities in this area.
Project description:BackgroundBoth BRCA1 and epidermal growth factor receptor (EGFR) play a critical role in ovarian cancer progression. However, the crosstalk between BRCA1 and EGFR signaling pathways in ovarian cancer remains largely unknown.MethodsThe effect of BRCA1 on EGFR was assessed in 146 serous ovarian cancer patients (28 pairs of BRCA1-mutated or not, 23 pairs of BRCA2-mutated or not, and 22 pairs with hypermethylated BRCA1 promoter or not). BRCA1 promoter methylation was analyzed by bisulfite sequencing using primers flanking the core promoter region. Expression levels of BRCA1 and EGFR were assessed by immunohistochemistry and real-time PCR. The knockdown and overexpression of BRCA1 were achieved using a lentiviral vector in 293 T cells, SKOV3 ovarian cancer cells, and primary non-mutated and BRCA1-mutated ovarian cancer cells.ResultsEGFR expression was increased in all cancer tissues compared to normal tissues. Additionally, EGFR expression was higher in normal tissues of BRCA1-mutated patients, and was further increased in cancer tissues; EGFR levels were also significantly elevated in ovarian cancer with promoter hypermethylation-mediated inactivation of BRCA1. BRCA1 knockdown was an effective way to activate EGFR expression in ovarian cancer cells.ConclusionsThese results indicate that BRCA1 may be a potential trigger in transcriptional regulation of EGFR in the development of ovarian cancer.
Project description:PurposeSubset analyses from phase III evaluation of epidermal growth factor receptor inhibition (EGFRi) suggest improved outcomes in patients with EGFR-amplified gastroesophageal adenocarcinoma (GEA), but large-scale analyses are lacking. This multi-institutional analysis sought to determine the role of EGFRi in the largest cohort of patients with EGFR-amplified GEA to date.Patients and methodsA total of 60 patients from 15 tertiary cancer centers in six countries met the inclusion criteria. These criteria required histologically confirmed GEA in the metastatic or unresectable setting with EGFR amplification identified by using a Clinical Laboratory Improvement Amendments-approved assay, and who received on- or off-protocol EGFRi. Testing could be by tissue next-generation sequencing, plasma circulating tumor DNA next-generation sequencing, and/or fluorescence in situ hybridization performed by a Clinical Laboratory Improvement Amendments approved laboratory. Treatment patterns and outcomes analysis was also performed using a deidentified clinicogenomic database (CGDB).ResultsSixty patients with EGFR-amplified GEA received EGFRi, including 31 of 60 patients (52%) with concurrent chemotherapy. Across treatment lines, patients achieved a 43% objective response rate with a median progression-free survival of 4.6 months (95% CI, 3.5 to 6.4). Patients receiving EGFRi in first-, second-, and third-line therapy achieved a median overall survival of 20.6 months (95% CI, 13.5 to not reached [NR]), 9 months (95% CI, 7.9 to NR), and 8.4 months (7.6 to NR), respectively. This survival far exceeded the 11.2-month (95% CI, 8.7 to 14.2) median overall survival from first-line initiation of non-EGFRi therapy in patients with EGFR-amplified GEA in the CGDB. Despite this benefit, analysis of the CGDB (January 2011-December 2020) suggests that only 5% of patients with EGFR-amplified GEA received EGFRi.ConclusionPatients with EGFR-amplified GEA derive significant benefit from EGFRi. Further prospective investigation of EGFRi in a well-selected patient population is ongoing in an upcoming trial of amivantamab in EGFR and/or MET amplified GEA.
Project description:Targeted photodynamic therapy (TPDT) involves the administration of a photosensitizer (PS) conjugated with a targeting moiety followed by light activation. The systemic toxicity associated with conventional therapy may thus be significantly reduced in TPDT due to the dual selectivity provided by the spatial localization of the illumination as well as the target-localizing ability of the conjugate. Herein, a photo-immuno-conjugate-associating-liposome (PICAL) for TPDT has been developed in which the FDA approved benzoporphyrin derivative monoacid A (BPD) and the Cetuximab antibody for epidermal growth factor receptor (EGFR) were associated into a stable Preformed Plain Liposome (PPL) by passive physical adsorption. Results have shown that the BPD molecules adsorbed into PICAL have stable optical behavior and a higher fluorescence quantum yield than free-BPD. The Cetuximab adsorbed into PPL selectively binds to cells that overexpress EGFR. The inhibition of EGFR signaling by PICAL has enhanced PDT-mediated ovarian cancer cell death.From the clinical editorIn this basic science study, a photo-immuno-conjugate-associating-liposome for targeted photodynamic therapy is investigated. The FDA-approved benzoporphyrin derivative monoacid A and an epidermal growth factor receptor antibody were assembed into a stable Preformed Plain Liposome (PPL) by passive physical adsorption. The authors demonstrate therapeutic efficacy of the above construct in an ovarian tumor system.
Project description:BACKGROUND:Spleen tyrosine kinase (SYK) is frequently upregulated in recurrent ovarian carcinomas, for which effective therapy is urgently needed. SYK phosphorylates several substrates, but their translational implications remain unclear. Here, we show that SYK interacts with EGFR and ERBB2, and directly enhances their phosphorylation. METHODS:We used immunohistochemistry and immunoblotting to assess SYK and EGFR phosphorylation in ovarian serous carcinomas. Association with survival was determined by Kaplan-Meier analysis and the log-rank test. To study its role in EGFR signaling, SYK activity was modulated using a small molecule inhibitor, a syngeneic knockout, and an active kinase inducible system. We applied RNA-seq and phosphoproteomic mass spectrometry to investigate the SYK-regulated EGF-induced transcriptome and downstream substrates. FINDINGS:Induced expression of constitutively active SYK130E reduced cellular response to EGFR/ERBB2 inhibitor, lapatinib. Expression of EGFRWT, but not SYK non-phosphorylatable EGFR3F mutant, resulted in paclitaxel resistance, a phenotype characteristic to SYK active ovarian cancers. In tumor xenografts, SYK inhibitor reduces phosphorylation of EGFR substrates. Compared to SYKWT cells, SYKKO cells have an attenuated EGFR/ERBB2-transcriptional activity and responsiveness to EGF-induced transcription. In ovarian cancer tissues, pSYK (Y525/526) levels showed a positive correlation with pEGFR (Y1187). Intense immunoreactivity of pSYK (Y525/526) correlated with poor overall survival in ovarian cancer patients. INTERPRETATION:These findings indicate that SYK activity positively modulates the EGFR pathway, providing a biological foundation for co-targeting SYK and EGFR. FUND: Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, NIH/NCI, Ovarian Cancer Research Foundation Alliance, HERA Women's Cancer Foundation and Roseman Foundation. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript and eventually in the decision to submit the manuscript.
Project description:The majority of borderline ovarian tumours (BOTs) behave in a benign fashion, but some may show aggressive behavior. The reason behind this has not been elucidated. The epidermal growth factor receptor (EGFR) is known to contribute to cell survival signals as well as metastatic potential of some tumours. EGFR expression and gene status have not been thoroughly investigated in BOTs as it has in ovarian carcinomas. In this study we explore protein expression as well as gene mutations and amplifications of EGFR in BOTs in comparison to a subset of other epithelial ovarian tumours. We studied 85 tumours, including 61 BOTs, 10 low grade serous carcinomas (LGSCs), 9 high grade serous carcinomas (HGSCs) and 5 benign epithelial tumours. EGFR protein expression was studied using immunohistochemistry. Mutations were investigated by Sanger sequencing exons 18-21 of the tyrosine kinase domain of EGFR. Cases with comparatively higher protein expression were examined for gene amplification by chromogenic in situ hybridization. We also studied the tumours for KRAS and BRAF mutations. Immunohistochemistry results revealed both cytoplasmic and nuclear EGFR expression with variable degrees between tumours. The level of nuclear localization was relatively higher in BOTs and LGSCs as compared to HGSCs or benign tumours. The degree of nuclear expression of BOTs showed no significant difference from that in LGSCs (mean ranks 36.48, 33.05, respectively, p=0.625), but was significantly higher than in HGSCs (mean ranks: 38.88, 12.61 respectively, p< 0.001) and benign tumours (mean ranks: 35.18, 13.00 respectively, p= 0.010). Cytoplasmic expression level was higher in LGSCs. No EGFR gene mutations or amplification were identified, yet different polymorphisms were detected. Five different types of point mutations in the KRAS gene and the V600E BRAF mutation were detected exclusively in BOTs and LGSCs. Our study reports for the first time nuclear localization of EGFR in BOTs. The nuclear localization similarities between BOTs and LGSCs and not HGSCs support the hypothesis suggesting evolution of LGSCs from BOTs. We also confirm that EGFR mutations and amplifications are not molecular events in the pathogenesis of BOTs.
Project description:The epithelial-to-mesenchymal transition (EMT) that occurs during embryonic development is recapitulated during tumor metastasis. Important regulators of this process include growth factors, transcription factors, and adhesion molecules. New evidence suggests that microRNA (miRNA) activity contributes to metastatic progression and EMT; however, the mechanisms leading to altered miRNA expression during cancer progression remain poorly understood. Importantly, overexpression of the epidermal growth factor receptor (EGFR) in ovarian cancer correlates with poor disease outcome and induces EMT in ovarian cancer cells. We report that EGFR signaling leads to transcriptional repression of the miRNA miR-125a through the ETS family transcription factor PEA3. Overexpression of miR-125a induces conversion of highly invasive ovarian cancer cells from a mesenchymal to an epithelial morphology, suggesting miR-125a is a negative regulator of EMT. We identify AT-rich interactive domain 3B (ARID3B) as a target of miR-125a and demonstrate that ARID3B is overexpressed in human ovarian cancer. Repression of miR-125a through growth factor signaling represents a novel mechanism for regulating ovarian cancer invasive behavior.
Project description:PurposeHuman epidermal growth factor receptor 2 (HER2) is over-expressed in over 30% of ovarian cancer cases, playing an essential role in tumorigenesis and metastasis. Non-invasive imaging of HER2 is of great interest for physicians as a mean to better detect and monitor the progression of ovarian cancer. In this study, HER2 was assessed as a biomarker for ovarian cancer imaging using 64Cu-labeled pertuzumab for immunoPET imaging.MethodsHER2 expression and binding were examined in three ovarian cancer cell lines (SKOV3, OVCAR3, Caov3) using in vitro techniques, including western blot and saturation binding assays. PET imaging and biodistribution studies in subcutaneous models of ovarian cancer were performed for non-invasive in vivo evaluation of HER2 expression. Additionally, orthotopic models were employed to further validate the imaging capability of 64Cu-NOTA-pertuzumab.ResultsHER2 expression was highest in SKOV3 cells, while OVCAR3 and Caov3 displayed lower HER2 expression. 64Cu-NOTA-pertuzumab showed high specificity for HER2 (Ka = 3.1 ± 0.6 nM) in SKOV3. In subcutaneous tumors, PET imaging revealed tumor uptake of 41.8 ± 3.8, 10.5 ± 3.9, and 12.1 ± 2.3%ID/g at 48 h post-injection for SKOV3, OVCAR3, and Caov3, respectively (n = 3). In orthotopic models, PET imaging with 64Cu-NOTA-pertuzumab allowed for rapid and clear delineation of both primary and small peritoneal metastases in HER2-expressing ovarian cancer.Conclusions64Cu-NOTA-pertuzumab is an effective PET tracer for the non-invasive imaging of HER2 expression in vivo, rendering it a potential tracer for treatment monitoring and improved patient stratification.
Project description:Acquisition of platinum resistance following first line platinum/taxane therapy is commonly observed in ovarian cancer patients and prevents clinical effectiveness. There are few options to prevent platinum resistance; however, demethylating agents have been shown to resensitize patients to platinum therapy thereby demonstrating that DNA methylation is a critical contributor to the development of platinum resistance. We previously reported the Epidermal Growth Factor Receptor (EGFR) is a novel regulator of DNA methyltransferase (DNMT) activity and DNA methylation. Others have shown that EGFR activation is linked to cisplatin treatment and platinum resistance. We hypothesized that cisplatin induced activation of the EGFR mediates changes in DNA methylation associated with the development of platinum resistance. To investigate this, we evaluated EGFR signaling and DNMT activity after acute cisplatin exposure. We also developed an in vitro model of platinum resistance to examine the effects of EGFR inhibition on acquisition of cisplatin resistance. Acute cisplatin treatment activates the EGFR and downstream signaling pathways, and induces an EGFR mediated increase in DNMT activity. Cisplatin resistant cells also showed increased DNMT activity and global methylation. EGFR inhibition during repeated cisplatin treatments generated cells that were more sensitive to cisplatin and did not develop increases in DNA methylation or DNMT activity compared to controls. These findings suggest that activation of EGFR during platinum treatment contributes to the development of platinum resistance. Furthermore, EGFR inhibition may be an effective strategy at attenuating the development of platinum resistance thereby enhancing the effectiveness of chemotherapeutic treatment in ovarian cancer.