Unknown

Dataset Information

0

A Unified Model for the Analysis of Gene-Environment Interaction.


ABSTRACT: Gene-environment (G × E) interaction is important for many complex traits. In a case-control study of a disease trait, logistic regression is the standard approach used to model disease as a function of a gene (G), an environmental factor (E), G × E interaction, and adjustment covariates. We propose an alternative model with G as the outcome and show how it provides a unified framework for obtaining results from all of the common G × E tests. These include the 1-degree-of-freedom (df) test of G × E interaction, the 2-df joint test of G and G × E, the case-only and empirical Bayes tests, and several 2-step tests. In the context of this unified model, we propose a novel 3-df test and demonstrate that it provides robust power across a wide range of underlying G × E interaction models. We demonstrate the 3-df test in a genome-wide scan of G × sex interaction for childhood asthma using data from the Children's Health Study (Southern California, 1993-2001). This scan identified a strong G × sex interaction at the phosphodiesterase gene 4D locus (PDE4D), a known asthma-related locus, with a strong effect in males (per-allele odds ratio = 1.70; P = 3.8 × 10-8) and virtually no effect in females. We describe a software program, G×EScan (University of Southern California, Los Angeles, California), which can be used to fit standard and unified models for genome-wide G × E studies.

SUBMITTER: Gauderman WJ 

PROVIDER: S-EPMC6438805 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Unified Model for the Analysis of Gene-Environment Interaction.

Gauderman W James WJ   Kim Andre A   Conti David V DV   Morrison John J   Thomas Duncan C DC   Vora Hita H   Lewinger Juan Pablo JP  

American journal of epidemiology 20190401 4


Gene-environment (G × E) interaction is important for many complex traits. In a case-control study of a disease trait, logistic regression is the standard approach used to model disease as a function of a gene (G), an environmental factor (E), G × E interaction, and adjustment covariates. We propose an alternative model with G as the outcome and show how it provides a unified framework for obtaining results from all of the common G × E tests. These include the 1-degree-of-freedom (df) test of G  ...[more]

Similar Datasets

| S-EPMC4842175 | biostudies-literature
| S-EPMC6295107 | biostudies-literature
| S-EPMC7028505 | biostudies-literature
| S-EPMC4926416 | biostudies-literature
| S-EPMC7261513 | biostudies-literature
| S-EPMC4003132 | biostudies-literature
| S-EPMC3266891 | biostudies-literature
| S-EPMC7997256 | biostudies-literature
| S-EPMC10622332 | biostudies-literature
| S-EPMC4157149 | biostudies-literature