Unknown

Dataset Information

0

CAMP Stimulates SLC26A3 Activity in Human Colon by a CFTR-Dependent Mechanism That Does Not Require CFTR Activity.


ABSTRACT: BACKGROUND & AIMS:SLC26A3 (DRA) is an electroneutral Cl-/HCO3- exchanger that is present in the apical domain of multiple intestinal segments. An area that has continued to be poorly understood is related to DRA regulation in acute adenosine 3',5'-cyclic monophosphate (cAMP)-related diarrheas, in which DRA appears to be both inhibited as part of NaCl absorption and stimulated to contribute to increased HCO3- secretion. Different cell models expressing DRA have shown that cAMP inhibits, stimulates, or does not affect its activity. METHODS:This study re-evaluated cAMP regulation of DRA using new tools, including a successful knockout cell model, a specific DRA inhibitor (DRAinh-A250), specific antibodies, and a transport assay that did not rely on nonspecific inhibitors. The studies compared DRA regulation in colonoids made from normal human colon with regulation in the colon cancer cell line, Caco-2. RESULTS:DRA is an apical protein in human proximal colon, differentiated colonoid monolayers, and Caco-2 cells. It is glycosylated and appears as 2 bands. cAMP (forskolin) acutely stimulated DRA activity in human colonoids and Caco-2 cells. In these cells, DRA is the predominant apical Cl-/HCO3- exchanger and is inhibited by DRAinh-A250 with a median inhibitory concentration of 0.5 and 0.2 ?mol/L, respectively. However, there was no effect of cAMP in HEK293/DRA cells that lacked a cystic fibrosis transmembrane conductance regulator (CFTR). When CFTR was expressed in HEK293/DRA cells, cAMP also stimulated DRA activity. In all cases, cAMP stimulation of DRA was not inhibited by CFTRinh-172. CONCLUSIONS:DRA is acutely stimulated by cAMP by a process that is CFTR-dependent, but appears to be one of multiple regulatory effects of CFTR that does not require CFTR activity.

SUBMITTER: Tse CM 

PROVIDER: S-EPMC6438990 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

cAMP Stimulates SLC26A3 Activity in Human Colon by a CFTR-Dependent Mechanism That Does Not Require CFTR Activity.

Tse Chung-Ming CM   Yin Jianyi J   Singh Varsha V   Sarker Rafiquel R   Lin Ruxian R   Verkman Alan S AS   Turner Jerrold R JR   Donowitz Mark M  

Cellular and molecular gastroenterology and hepatology 20190117 3


<h4>Background & aims</h4>SLC26A3 (DRA) is an electroneutral Cl<sup>-</sup>/HCO<sub>3</sub><sup>-</sup> exchanger that is present in the apical domain of multiple intestinal segments. An area that has continued to be poorly understood is related to DRA regulation in acute adenosine 3',5'-cyclic monophosphate (cAMP)-related diarrheas, in which DRA appears to be both inhibited as part of NaCl absorption and stimulated to contribute to increased HCO<sub>3</sub><sup>-</sup> secretion. Different cell  ...[more]

Similar Datasets

| S-EPMC2838518 | biostudies-literature
| S-EPMC2673871 | biostudies-literature
| S-EPMC5660164 | biostudies-literature
| S-EPMC5960480 | biostudies-literature
| S-EPMC7807051 | biostudies-literature
| S-EPMC8218889 | biostudies-literature
| S-EPMC1951747 | biostudies-literature
| S-EPMC4007577 | biostudies-literature
| S-EPMC2862470 | biostudies-literature
| S-EPMC2940479 | biostudies-literature