Unknown

Dataset Information

0

Optimizing the depth and the direction of prospective planning using information values.


ABSTRACT: Evaluating the future consequences of actions is achievable by simulating a mental search tree into the future. Expanding deep trees, however, is computationally taxing. Therefore, machines and humans use a plan-until-habit scheme that simulates the environment up to a limited depth and then exploits habitual values as proxies for consequences that may arise in the future. Two outstanding questions in this scheme are "in which directions the search tree should be expanded?", and "when should the expansion stop?". Here we propose a principled solution to these questions based on a speed/accuracy tradeoff: deeper expansion in the appropriate directions leads to more accurate planning, but at the cost of slower decision-making. Our simulation results show how this algorithm expands the search tree effectively and efficiently in a grid-world environment. We further show that our algorithm can explain several behavioral patterns in animals and humans, namely the effect of time-pressure on the depth of planning, the effect of reward magnitudes on the direction of planning, and the gradual shift from goal-directed to habitual behavior over the course of training. The algorithm also provides several predictions testable in animal/human experiments.

SUBMITTER: Sezener CE 

PROVIDER: S-EPMC6440644 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optimizing the depth and the direction of prospective planning using information values.

Sezener Can Eren CE   Dezfouli Amir A   Keramati Mehdi M  

PLoS computational biology 20190312 3


Evaluating the future consequences of actions is achievable by simulating a mental search tree into the future. Expanding deep trees, however, is computationally taxing. Therefore, machines and humans use a plan-until-habit scheme that simulates the environment up to a limited depth and then exploits habitual values as proxies for consequences that may arise in the future. Two outstanding questions in this scheme are "in which directions the search tree should be expanded?", and "when should the  ...[more]

Similar Datasets

| S-EPMC5539512 | biostudies-other
| S-EPMC7775882 | biostudies-literature
| S-EPMC7307775 | biostudies-literature
| S-EPMC8366423 | biostudies-literature
| S-EPMC2567998 | biostudies-literature
| S-EPMC7787534 | biostudies-literature
| S-EPMC6361073 | biostudies-literature
| S-EPMC2638584 | biostudies-other
| S-EPMC8584672 | biostudies-literature
| S-EPMC4015991 | biostudies-literature