Unknown

Dataset Information

0

Fluorinated DNA Micelles: Synthesis and Properties.


ABSTRACT: Creating new functional building blocks that expand the versatility of nanostructures depends on bottom-up self-assembly of amphiphilic biomolecules. Inspired by the unique physicochemical properties of hydrophobic perfluorocarbons, coupled with the powerful functions of nucleic acids, we herein report the synthesis of a series of diperfluorodecyl-DNA conjugates (PF-DNA) which can efficiently self-assemble into micelles in aqueous solution. On the basis of the micelle structure, both target binding affinity and enzymatic resistance of the DNA probe can be enhanced. In addition, based on the hydrophobic effect, the PF-DNA micelles (PFDM) can actively anchor onto the cell membrane, offering a promising tool for cell-surface engineering. Finally, the PFDM can enter cells, which is significant for designing carriers for intracellular delivery. The combined advantages of the DNA micelle structure and the unique physicochemical properties of perfluorocarbons make these PFDM promising for applications in bioimaging and biomedicine.

SUBMITTER: Zou J 

PROVIDER: S-EPMC6442727 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fluorinated DNA Micelles: Synthesis and Properties.

Zou Jianmei J   Jin Cheng C   Wang Ruowen R   Kuai Hailan H   Zhang Lili L   Zhang Xiaobing X   Li Juan J   Qiu Liping L   Tan Weihong W  

Analytical chemistry 20180524 11


Creating new functional building blocks that expand the versatility of nanostructures depends on bottom-up self-assembly of amphiphilic biomolecules. Inspired by the unique physicochemical properties of hydrophobic perfluorocarbons, coupled with the powerful functions of nucleic acids, we herein report the synthesis of a series of diperfluorodecyl-DNA conjugates (PF-DNA) which can efficiently self-assemble into micelles in aqueous solution. On the basis of the micelle structure, both target bind  ...[more]

Similar Datasets

| S-EPMC7540388 | biostudies-literature
| S-EPMC3684079 | biostudies-literature
| S-EPMC5793589 | biostudies-literature
| S-EPMC8500828 | biostudies-literature
| S-EPMC9323187 | biostudies-literature
| S-EPMC6104562 | biostudies-literature
| S-EPMC4440806 | biostudies-literature
| S-EPMC5537313 | biostudies-literature
| S-EPMC6270490 | biostudies-literature
| S-EPMC4477688 | biostudies-literature