Unknown

Dataset Information

0

Synergic effect of adsorbed gas and charging on surface flashover.


ABSTRACT: Flashover is a crucial issue in both high-voltage engineering and surface physics. It not only challenges the existing theories about its dynamic evolution, but also inhibits the clean energy revolution by limiting the accessible voltage rating of power equipment. It is of significance to elucidate the microscopic process along the interface to improve the flashover performance. In the present study, the synergic effect of adsorbed gas and surface charging is investigated, which reveals a long ignored factor for determining the flashover voltage. Depending on the relative amount of adsorbed gas, the flashover voltage varies, which exhibit different behavior from the bulk breakdown of the same gas. The amount of N2 gas adsorbed on epoxy resin (EP) surface is much larger than that on Al2O3 ceramic surface, corresponding to the observed higher flashover voltage on EP. It is proposed that the adsorbed gas molecules not only modify the local surface charging state via their interaction with the trapped charges, but also capture free electrons due to the distortion of their electronic distribution. Both effects suppress the free path length of electrons in the gas-solid interface. This work explores another possibility to improve the surface flashover performance.

SUBMITTER: Li S 

PROVIDER: S-EPMC6445122 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synergic effect of adsorbed gas and charging on surface flashover.

Li Shengtao S   Huang Yin Y   Min Daomin D   Qu Guanghao G   Niu Huan H   Li Zhen Z   Wang Weiwang W   Li Jianying J   Liu Wenfeng W  

Scientific reports 20190402 1


Flashover is a crucial issue in both high-voltage engineering and surface physics. It not only challenges the existing theories about its dynamic evolution, but also inhibits the clean energy revolution by limiting the accessible voltage rating of power equipment. It is of significance to elucidate the microscopic process along the interface to improve the flashover performance. In the present study, the synergic effect of adsorbed gas and surface charging is investigated, which reveals a long i  ...[more]

Similar Datasets

| S-EPMC8782963 | biostudies-literature
| S-EPMC3104519 | biostudies-literature
| S-EPMC9756343 | biostudies-literature
| S-EPMC6423576 | biostudies-literature
| S-EPMC6798039 | biostudies-literature
| S-EPMC9169768 | biostudies-literature
| S-EPMC7289768 | biostudies-literature
| S-EPMC9658088 | biostudies-literature
| S-EPMC9454260 | biostudies-literature
| S-EPMC6787174 | biostudies-literature