Unknown

Dataset Information

0

3DCellAtlas Meristem: a tool for the global cellular annotation of shoot apical meristems.


ABSTRACT: Modern imaging approaches enable the acquisition of 3D and 4D datasets capturing plant organ development at cellular resolution. Computational analyses of these data enable the digitization and analysis of individual cells. In order to fully harness the information encoded within these datasets, annotation of the cell types within organs may be performed. This enables data points to be placed within the context of their position and identity, and for equivalent cell types to be compared between samples. The shoot apical meristem (SAM) in plants is the apical stem cell niche from which all above ground organs are derived. We developed 3DCellAtlas Meristem which enables the complete cellular annotation of all cells within the SAM with up to 96% accuracy across all cell types in Arabidopsis and 99% accuracy in tomato SAMs. Successive layers of cells are identified along with the central stem cells, boundary regions, and layers within developing primordia. Geometric analyses provide insight into the morphogenetic process that occurs during these developmental processes. Coupling these digital analyses with reporter expression will enable multidimensional analyses to be performed at single cell resolution. This provides a rapid and robust means to perform comprehensive cellular annotation of plant SAMs and digital single cell analyses, including cell geometry and gene expression. This fills a key gap in our ability to analyse and understand complex multicellular biology in the apical plant stem cell niche and paves the way for digital cellular atlases and analyses.

SUBMITTER: Montenegro-Johnson T 

PROVIDER: S-EPMC6448224 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

3DCellAtlas Meristem: a tool for the global cellular annotation of shoot apical meristems.

Montenegro-Johnson Thomas T   Strauss Soeren S   Jackson Matthew D B MDB   Walker Liam L   Smith Richard S RS   Bassel George W GW  

Plant methods 20190404


Modern imaging approaches enable the acquisition of 3D and 4D datasets capturing plant organ development at cellular resolution. Computational analyses of these data enable the digitization and analysis of individual cells. In order to fully harness the information encoded within these datasets, annotation of the cell types within organs may be performed. This enables data points to be placed within the context of their position and identity, and for equivalent cell types to be compared between  ...[more]

Similar Datasets

2020-08-14 | PXD020608 | Pride
| S-EPMC7216077 | biostudies-literature
| S-EPMC2156186 | biostudies-literature
| S-EPMC2755034 | biostudies-literature
| S-EPMC4455781 | biostudies-literature
2007-11-13 | GSE4004 | GEO
2012-06-01 | GSE30259 | GEO
2010-06-25 | E-GEOD-4004 | biostudies-arrayexpress
| S-EPMC3066213 | biostudies-literature
| S-EPMC7058014 | biostudies-literature